Смекни!
smekni.com

Кодирование изображений (стр. 1 из 5)

1.Цвет

Человеческий глаз состоит примерно из 7 млн.колбочек и 120 млн. палочек. Функция палочек заключается в “ночном зрении” - светочувствительности и приспособлении к окружающей яркости. Функция колбочек - “дневное зрение” - восприятие цвета, формыи деталей предмета. В них заложены три типа воспринимающих элементов, каждое из которых воспринимает световое излучение только определенной длины волн, соответствующих одному из трех основных цветов: красному, зеленому и синему. Остальные цвета и оттенки получаются смешением этих трех.

Человеческий глаз воспринимает цветовую информацию в диапазоне волн примерно от 380 нм (синий цвет) до 770 нм (красный цвет). Причем наилучшую чувствительность имеет в районе 520 нм (зеленый цвет).

На рисунке показана чувствительность глаза в зависимости от длины принимаемой волны. Область частот, левее синей - ультрафиолетовые волны, правее красной - инфракрасные волны.

Грассман привел законы природы цвета:

Трехмерность природы цвета. Глаз реагирует на три различных цветовых составляющих. Примеры: красный, зеленый и синий цвета;цветовой тон (доминирующая длина волны), насыщенность (чистоту) и яркость (светлость).

Четыре цвета всегда линейно зависимы, то есть

, где
. Для смеси двух цветов
и
имеет место равенство:
.Если цвет
равен цвету
и цвет
тоже равен цвету
, то
цвет
равен цвету
независимо от структуры спектров энергии
.

Цветовое пространство непрерывно. Если в смеси трех цветов один непрерывно изменяется, а другие остаются постоянными, то цвет смеси будет меняться непрерывно.

Рассмотрим основные цветовые модели:

RGB.

Данная модель построена на основе строения глаза. Она идеально удобна для светящихся поверхностей (мониторы, телевизоры, цветные лампы и т.п.). В основе ее лежат три цвета: Red- красный, Green- зеленый и Blue- синий. Еще Ломоносов заметил,что с помощью этих трех основных цветов можно получить почти весь видимый спектр. Например, желтый цвет- это сложение красного и зеленого. Поэтому RGB называют аддитивной системой смешения цветов.

Чаще всего данную модель представляют в виде единичного куба с ортами: (1;0;0)- красный, (0;1;0)- зеленый, (0;0;1)- синий и началом (0;0;0)- черный. На рисунке показан куб и также распределение цветов вдоль указанных векторов.

CMY.

Данная модель применяется для отражающих поверхностей (типографских и принтерных красок, пленок и т.п.). Ее основные цвета: Cyan- голубой, Magenta- пурпурный и Yellow- желтый являются дополнительными к основным цветам RGB. Дополнительный цвет - разность между белым и данным, например, желтый = белый - синий.

Поэтому CMY называют субтрактивной системой смешения цветов. Например, при пропускании света пурпурный объект поглощается зеленая часть спектра, если далее пропустить через желтый объект, то поглотится синяя часть спектра и останется лишь красный цвет. Данный принцип используют светофильтры. На верхнем рисунке в кругах - основные цвета системы RGB,на пересечениях - их смешения. Аналогичным образом работают с красками художники, формируя необходимую палитру. На нижнем рисунке в кругах - основные цвета CMY, на пересечениях - смешения. Связь между RGB и CMY можно выразить через следующую формулу:

Наряду с системой CMY также часто применяют и ее расширение CMYK. Дополнительный канал K (от английского blacK) - черный. Он применяется для получения более “чистых” оттенков черного. В цветных принтерах чаще всего используется четыре красителя. Данная система широко применяется в полиграфии.

CIE.

Если имеется один контрольный цвет, то с помощью него можно получить некоторые цвета, варьируя данный контрольный по светлоте (при условии, что не используется цветовой тон и насыщенность). Данная процедура называется фотометрией и используется при создании монохроматических репродукций цветных изображений.

С помощью двух контрольных цветов можно получить гораздо больше цветов, но не все. Для получения видимого набора цветов используют три контрольных цвета, соблюдая условие, что они находятся в разных областях спектра. Рассмотрим следующий базис цветов:

Red- красный; лежит в области длинных видимых волн (`700 нм).

Green- зеленый; лежит в области средних видимых волн (`546 нм).

Blue- синий; лежит в области средних коротких волн (`436нм).

Рассмотрим цвет C:

,

r, g, b- относительные количества потоков базовых цветов, входящие в интервал [0; 1]. Но данным сложением можно уравнять не все цвета. Например, для получения сине-зеленого цвета объединяем синий и зеленый потоки цвета, но их сумма выглядит светлее, чем необходимый. Если попытаться сделать его темнее с помощью красного, то получим еще более светлый результирующий цвет, так как световые энергии складываются. То есть мы можем добавлять красный, для получения более светлого образца. Математически добавление красного цвета к поучаемому цвету соответствует вычитанию его из двух оставшихся базовых потоков (физически это невозможно, так как отрицательной интенсивности света не существует). Запишем уравнение следующим образом:

.

На рисунке показаны функции r, g, b уравнения по цвету для монохроматических потоков цвета с длинами волн 436, 546, 770 нм. С их помощью можно уравнять все длины волн видимого спектра. На графике присутствует отрицательная область. Значения в данной области соответствуют “добавлению” инструментального цвета к синтезируемому. Изучением данных функций занимается колориметрия. Замечено, что один и тот же цвет можно получить разными наборами базисных цветов (r1, g1, b1)и (r2, g2, b2). То есть цвет можно уравнять различными составными источниками с неодинаковым спектральным распределением. (r1, g1, b1)и (r2, g2, b2)- метамеры.

Представим цвет С как вектор с составляющими rR, gG, bB. Пересечение вектора C с единичной плоскостью R+G+B=1 дает относительные веса его красной, зеленой и синей составляющих. Их также называют значениями или координатами цветности:

Заметим,

. Рассмотрим связь:
. Если функции уравнивания по цвету перенести в трехмерное пространство, то результат не будет целиком лежать в положительном октанте.

В 1931 был принят стандарт CIE (Commission International de l’Eclairage - Международная комиссия по освещению), в качестве основы которого был выбран двумерный цветовой график и набор из трех функций реакции глаза, исключающий отрицательной области и удобный для обработки. Гипотетические цвета CIE - X, Y и Z. Треугольник XYZ задан так, что в него входит видимый спектр. Координаты цветности CIE(x, y, z) задаются следующим образом:

,

и

. При проецировании треугольника XYZ на плоскость (x, y) получаем цветовой график CIE. Координаты x и y - относительные количества трех основных цветов XYZ, требуемых для составления нужного цвета. Яркость определяется величиной Y, а X и Y подбираются в соответствующем масштабе. Таким образом, триада (x, y, Y) задает цвет. Обратное преобразование имеет вид:

Комиссия решила ориентировать треугольник XYZ таким образом, что равные количества гипотетических основных цветов XYZ давали в сумме белый. На рисунке изображен цветовой график. Область на графике - видимое множество цветов. На контуре проставлены значения соответствующих длин волн в нм, соответствующие чистым, не разбавленным цветам. В центре области находится опорный белый цвет - точка равных энергий, с координатами x=y=0.33(3). Часто применяют следующие источники CIE:

Название Температура x y
Лампа с вольфрамовой нитью накаливания. 2856К 0.448 0.408
Солнечный свет в полдень. 5600К 0.349 0.352
Полуденное освещение при сплошной облачности. 6300К 0.310 0.316
Опорный белый стандарт для мониторов и NTSC. 6400К 0.313 0.329

Система (x, y, Y)подчиняется законам Грассмана. На рисунке показана цветовая область графика CIE. Как видно, наибольшую площадь занимают цвета с преобладанием зеленого, что согласуется с чувствительной избирательностью человеческого глаза.