Смекни!
smekni.com

Разработка системы теплоснабжения (стр. 8 из 11)

Материал для печатной платы выбирают по ГОСТ 10316 - 78 или техническим условиям. Обозначения марок, например, СФ-1(2)-35 означают, что промышленностью выпускаются как односторонние СФ-1-35, так и двусторонние СФ-2-35 фольгированные материалы с указанными толщинами фольги и материала с фольгой. Буквы Н и Г в обозначении марки материала свидетельствуют о повышенной нагревостойкости (до +100°С) и гальваностойкости.

Фольгированные материалы предназначены для работы в следующих условиях:

– гетинакс без дополнительной влагозащиты предназначен для изготовления ПП, на которые в процессе работы может воздействовать окружающая среда, характеризующаяся относительной влажностью воздуха 45 - 75% при температуре 15 - 35°С;

– гетинакс с дополнительной влагозащитой и стеклотекстолит всех марок предназначены для изготовления ПП, на которые в процессе работы может воздействовать окружающая среда, характеризующаяся относительной влажностью воздуха до 98% при температуре не выше 40°С;

– фольгированные материалы в виде ПП должны допускать воздействие температуры до 60°С. Фольгированные материалы изготавливаются листами следующих номинальных размеров:

– гетинакс всех марок и толщин - 2440х1040; 1190х1040, 800х900 мм;

– стеклотекстолит всех марок и толщин - 1190х1010, 1010х890, 1010х840, 910х890, 640х490.

Условные обозначения фольгированных материалов - по ГОСТ 26246 - 84. Для материалов высшего и первого сортов дополнительно должно быть указано “в.с.” или “1с.”. Пример условного обозначения фольгированного стеклотекстолита высшего сорта толщиной 1,5 мм, облицованного с двух сторон медной электролитической гальваностойкой фольгой толщиной 35 мкм: СФ-2-35Г-1,5 в. с. ГОСТ 10316—78.

Для ПП, предназначенных для эксплуатации в условиях первой группы жесткости по ОСТ 4.077.000 (табл. 6), рекомендуется применять материалы на основе бумаги, для второй, третьей и четвертой групп жесткости — на основе стеклоткани.

3.3.2. Методы изготовления печатных плат

Известно большое количество технологических вариантов изготовления печатных плат. Наиболее широкое распространение получили следующие методы:

– химический метод. Заключается в том, что на медную фольгу, приклеенную к диэлектрику с одной или с двух сторон, наносят кислотостойкой краской рисунок расположения печатных проводников. Последующим травлением удаляется медь с незащищенных участков и на диэлектрике остается схема проводников.

Наиболее распространенными вариантами этого способа являются фотохимический, сетчато-химический, офсетно-химический, которые различаются способом нанесения защитного слоя.

Достоинства этого метода: достаточная простота, легко поддается автоматизации. Недостатки: необходимость применения металлических втулок при двустороннем монтаже и непроизводительный расход меди.

– электрохимический метод. Заключается в нанесении на плату кислотостойкой краской негативного рисунка проводников. Нанесение рисунка происходит с последующим наращиванием слоя меди.

Основное преимущество электрохимического метода заключается в возможности металлизации отверстий одновременно с получением проводников. Недостатком является низкая рассеивающая способность (0,5 ¸ 0,8 мм) и низкая прочность сцепления проводников с основанием.

Электрохимический метод находит применение главным образом в опытном и мелкосерийном производстве при изготовлении двусторонних плат с большим числом переходов.

– комбинированный метод. Заключается в получении проводников путем травления фольгированного диэлектрика и металлизацией отверстий электрохимическим способом. Сущность метода травления фольгированного материала с последующим вытравливанием фольги с отдельных участков платы. Этот метод обеспечивает получение четких линий проводников печатной схемы. Он характеризуется меньшей трудоемкостью по сравнению с электрохимическим методом. Печатные платы более надежны, так как при этом диэлектрик находится в более благоприятном условии, потому что фольга предохраняет его от действия электролита.

Комбинированный метод широко применяется при изготовлении двухсторонних печатных плат.

После механической обработки плата проверяется на наличие трещин на краях платы и в отверстиях, отслоения печатных проводников в зоне отверстий. Печатные проводники должны быть четкими. Целостность электрических цепей устанавливается методом прозвонки.

Детали на плату устанавливают вручную, пайку монтажных соединений выполняют паяльником мощностью 35Вт припоем ПОС - 60. Применяют только бескислотные флюсы. Качество пайки проверяют внешним осмотром.

Для защиты проводников и поверхности основания платы от воздействия припоя используют резистивные маски на основе эпоксидной смолы, сухого пленочного резиста.

3.3.3. Описание конструкции печатной платы

Конструкция разработанного контроллера одноплатная. Из-за большого числа пересекающихся проводников плата двусторонняя. Основной шаг координатной сетки принимаем 2,5 мм. Центры всех отверстий располагаются на печатной плате в узлах координатной сетки. Диаметр монтажных и переходных отверстий берется 0,8 мм.

Печатные проводники изображаются в виде отрезков линий, совпадающих с линиями координатной сетки или под углом кратным 15°. Печатные проводники выполнены одинаковой ширины - 0,5 мм с допуском 0,03 мм. Проводники покрыть сплавом “Розе”. Маркировку на плате выполнять травлением шрифтом 2.5 ПО ИО.010.007, в узких местах шрифтом 2.

3.4. Расчет надежности контроллера

3.4.1. Причины отказов средств вычислительной техники

Для проектирования на основе вычислительных машин надежных систем важно прежде всего выявить возможные причины отказов ЭВМ. Следует иметь в виду, что неисправности элементов аппаратного оборудования являются лишь одной из многих причин отказов, и потому результаты прогнозирования надежности только на основе этих отказов могут оказаться излишне оптимистичными. Рассмотрим некоторые наиболее важные источники неисправностей ЭВМ.

Ошибки в работе запоминающего устройства (ЗУ) и центрального процессора (ЦП) могут иметь весьма серьезные последствия, поскольку они способны привести к нарушению нормальной работы всей вычислительной системы, так как операционная система не может эффективно справляться с ошибками ЗУ. На качество работы ЗУ могут сильно влиять всплески питающего напряжения и отказы источников питания. Обычно для обнаружения ошибок в работе современных вычислительных машин осуществляется контроль операций по четности.

Ошибки процессора - явление редкое, но обычно оно имеет катастрофические последствия. Например, обращение к n-индексному регистру может внезапно прерваться вследствие потери какого-либо двоичного разряда и привести к отключению всей системы.

Ошибки в работе периферийного оборудования могут вызывать иногда серьезные затруднения, хотя обычно они не приводят к прекращению работы системы.

Ошибки в межмодульных соединениях. Существует общая убежденность, что ошибки в линиях передачи сигналов появляются и будут появляться всегда. Используются различные коды, обнаруживающие и исправляющие ошибки, тем не менее некоторые ошибки передачи данных в конечном счете могут приводить к выходу из строя терминалов и соединительных линий.

Ошибки по вине человека. Двумя важными источниками подобных ошибок являются ошибки оператора и ошибки в программах. Иногда по вине операторов может произойти полный отказ системы в результате неправильного включения или выключения системы и неправильной реакции на конкретную ситуацию.

Ошибки вследствие воздействия окружающей среды. Ошибки этого типа могут возникать в результате воздействия электромагнитного излучения при недостаточном экранировании или вследствие неисправностей оборудования кондиционирования воздуха.

Ошибки вследствие отклонения характеристик источников питания. Резкое возрастание напряжения источника питания может серьезно снижать долговечность элементов электронной аппаратуры. Вычислительные машины чувствительны даже к кратковременным понижениям и повышениям напряжения, поэтому они должны иметь соответствующую защиту. Заметим, что при возникновении отказа ЭВМ установить его истинную причину бывает нелегко, и причины многих ошибок часто остаются необъясненными [8].

3.4.2. Классификация неисправностей

Основными причинами сбоя в работе ЭВМ являются устойчивые отказы элементов аппаратного оборудования, временное ухудшение характеристик элементов и внешние воздействия на работу вычислительной системы. Для моделирования и оценки надежности ЭВМ удобно классифицировать неисправности по временному признаку, разделяя их на постоянные и перемежающиеся.

Постоянные неисправности часто могут вызываться катастрофическими отказами элементов. В этом случае отказ элемента является необратимым и устойчивым, а отказавший элемент подлежит ремонту или замене. Такие неисправности характеризуются большой длительностью устранения, а интенсивность соответствующих отказов зависит от условий окружающей среды. Так, например, обычно элемент характеризуется различными интенсивностями отказов во включенном и выключенном состояниях.

Перемежающиеся неисправности вызываются временным ухудшением характеристик элементов или такими внешними воздействиями, как электрические наводки, снижение напряжения и импульсные помехи. Подобные неисправности характеризуются ограниченной продолжительностью существования, и для их устранения не требуется ремонта или замены элементов. Эти неисправности проявляются в виде перемежающихся отказов.