Смекни!
smekni.com

Информатика (стр. 3 из 8)

В распределенных системах расстояние между модулями может быть очень велико (км). Поэтому для связи модуля используется каналообразующая аппаратура - преобразование сигналов и передача их по специальным каналам связи.

ВС могут быть многомашинными и многопроцессорными. В многомашинных системах каждая машина работает под управлением собственной ОС. Подключенные к ней другие машины рассматриваются ОС как специализированные внешние устройства. В многопроцессорных системах координация работ CPU осуществляется общей ОС. Кроме того, все CPU имеют общую RAM. Кроме этих признаков классификации рассматриваются и более мелкие:

1. По числу комплексированных ЭВМ или CPU.

2. По однотипности комплексированных элементов.

3. По степени территориальной обобщенности.

4. По методам управления различают централизованное и децентрализованное управление. Централизованное лучше используется в простых.

5. По структурным признакам (могут иметь свою иерархию). Чаще всего рассматривают топологические признаки.

6. По принципу закрепления функции различают:

- с жестким распределением функции

- с плавающим распределением функции управления

7. По временным режимам работы.

3. Комплексированность и совместимость в ВС.

Связь модулей в систему потребует, чтобы объединенные модули были совместимы. Понятие совместимости включает 3 аспекта:

1. Аппаратурную совместимость.

2. Программную совместимость.

3. Информационную совместимость.

1. Аппаратурная совместимость предполагает стандартизацию и унификацию связей. Понятие связи включает и стандартизацию кабельных соединений их разъемов, алгоритмов взаимодействия (последовательность сигналов), стандартизацию электрических сигналов.

2. Программная совместимость зависит от однородности и однотипности комплексированных средств. Если комплексированные средства однотипные, то программные средства полные. Если комплексированные средства не однородные, не одновременные, то такие системы совместимы по принципу “снизу вверх” (386-Pentium). Если комплексируется однотипная аппаратура, то обмен исходными модулями с последующей трансляцией их после обмена.

3. Информационная совместимость. Она предполагает, что передаваемые информации одинаково интерпретируются объектами, т.е. должны быть стандартизованы алфавиты, разрядность, форматы, структура, разновидность и т.д.

4. Взаимодействие комплексированных ЭВМ CPU может производиться по различным уровням. Различают логические и физические уровни.

Логические уровни:

5 логических уровней комплексирования:

Логические уровни объединяют средства комплексирования, имеющие общие принципы управления и работы.

1 уровень - уровень комплексирования CPU. Передача информации идет через систему прямого управления.

CPU - инициатор обмена - должен ... через интерфейс ... команду “прямое чтение” или “прямая запись”. Другой CPU, получив это прерывание, отвечает противоположной командой. После этого передается байт данных. Каждый байт 8 разрядов (0-255). Содержимое байта играет роль сигнала - приказа.

Этот канал не предназначается для передачи больших информационных массивов, т.к. процессы взаимодействия на каждый байт предостанавливают работу обоих CPU.

2 уровень. Общая оперативная память.

Она формируется из оперативной памяти комплексированных ЭВМ. В количестве устройства напряжения используется коммутатор. Этот уровень является наиболее предпочтительным из всех. Однако его реализация встречает трудности.

ООП является ядром классической структуры. Абонентами которых являются все каналы и комплексируемые CPU, т.е. память является своеобразной системой массового обслуживания. При этом создаваться различные конфликты. Для их разрешения необходимо предусматривать буферные зоны - создания в них очереди, обслуживание очереди и т.д. Поэтому в настоящее время многопроцессорные системы позволяют комплексировать не более 2-х, 4-х CPU. Не существует эффективных коммутаторов ООП.

3 логический уровень. Является основным при комплексировании ЭВМ. Согласователь скоростей или адаптер канал-канал работает по принципу.

Канал - инициатор обмена передает очередной байт на регистр обмена и взводит флажок - канал получатель считывает этот флажок, что является сигналом на установку следующего байта. число передаваемых байтов подсчитывается счетчиком. Скорость передачи данных - 1-10мбит/сек. Достоинством уровня является то, что передача данных между каналом осуществляется параллельными вычислениями CPU, не меньше им.

4 - уровень управления внешними устройствами. Осуществляется через групповые устройства управления, или контроллеры, которые позволяют управлять сразу несколькими накопителями. В количестве средства комплексирования здесь используется встроенные двухканальные переключатели. Для исключения конфликтных ситуаций на этом уровне используются команды управления и переключателя. “Зарезервировать и освободить”. Канал, выигравший состязание, резервирует контроллер за собой до полного окончания работ с требуемым накопителем. После команды “освободить” устройство становится доступным к другим каналам.

5 уровень. Уровень общих количественных устройств. Используется крайне редко, только для управления дорогостоящих универсальных аппаратур. Все внешние устройства являются устройствами точной механики, а значит они менее ... , чем чисто электронные устройства. Поэтому лучше использовать 4-й уровень комплексирования, который позволяет управлять группой устройств, а не отдельным устройством.

Многопроцессорные системы создаются на 2-ом логическом уровне. Многомашинные системы создаются при комплексировании на 1, 3, 4 и 5 рядах.

На практике стараются комбинировать уровни, что позволит создавать более гибкие системы оперативного обмена. На каждом логическом уровне может быть несколько логических устройств, на физическом - число устройств может быть иным.

Разделение физических и логических уровней позволяет обеспечить независимость разработки прог от конкретной аппаратурной реализации системы.

Стыковка логических и физических уровней обеспечивается:

а) при установке и генерации ОС

б) по указаниям оператора в начале вычислительного процесса

в) директивами пользователем размещаемыми в проге

Перечисленные 5 уровней имеют аналоги и в ПЭВМ:

1 уровень в ПЭВМ. Реализуются системы прерывания относящиеся к классу внешних

2 уровень. Общая оперативная память реализуется только в серверах. Наиболее распространенные серверы с двумя, четырьмя CPU Pentium. Имеются разработки, включающие до 10 CPU на общее поле RAM.

3 уровень. Полностью соответствует каналам прямого доступа к памяти, при котором передача данных между памятью и внешним устройством осуществляется параллельно вычислением в CPU.

4 уровень. Уровень управления.

5. Многомашинные комплексы.

Все ВС имеют истоки - это многопрограммные комплексы.

Принцип.

Коммутатор - это электронное устройство, позволяющее соединить объекты между собой. В положении ключа или 1 или 3, одна ЭВМ является основной, другая - вспомогательной. Вспомогательная может находиться на профилактике, либо заниматься не основными, а второстепенными вычислениями - так наз. резерв. В случае выхода из строя основного ЭВМ, другая ЭВМ ее замещает. Это режим повышенной надежности. В положении ключа 2 обе машины могут решать одну и ту же важную задачу.

6. Многопроцессорные ВС.

Для многопроцессорных является общая ОП, поэтому для управления многопроцессорной ВС является общая ОС, которая имеет сложные встроенные программные средства. ООП призвана обслуживать не только n CPU, но также все подключенные каналы и специализированные внешние устройства (таймеры, CPU прямого доступа и др.) ООП становится системой массового обслуживания, поскольку при работе возможны различные конфликты. Разрешение конфликтов может привести к появлению очередей запросов и их последующей разгрузке, поэтому на практике отсутствует МВС, имеющее большое число комплексированных CPU. Обычно комплексируют не более 2-4 CPU. В качестве средств комплексирования используют следующие:

1. Количество конфликтов уменьшается пропорционально количеству комплексированных CPU.

2. Уменьшение количества обращений к памяти за счет использования сверхоперативной памяти. Каждый CPU имеет свою кэш память. Однако этот способ не позволяет полностью уменьшить конфликты, поскольку возникает новая проблема: как синхронизировать содержимое эталона и копии.

3. Средством решения противоречия. Организация многоходовой памяти. Любая память имеет адрес, вход и выход информации. ООП делается многоблочной. Каждый блок имеет собственный вход и выход. ОС закрепляет отдельные блоки за отдельными CPU, что дает преимущества - все блоки могут работать параллельно. Этот вариант является развитием 2 варианта. Этот вариант находит применение в серверах сети, когда каждый CPU сервера обслуживает свое подмножество клиентов.

4. ООП может комплектоваться различного рода коммутаторами. При больших значения N и K коммутаторы становятся очень громоздки, потребляют большую мощность, техническое обслуживание затрудняется. При значениях N и K = 15-20 коммутатор становится приличных размеров и потребляет большую мощность. На практике часто используют не централизованный коммутатор, а распределенный коммутатор, т.е. слои распределяют либо по CPU, либо по блокам памяти.

7. ВС на базе CPU.

7.1. Введение.

С появлением CPU появились новые возможности для построения специфических структур ВС. CPU имеет 30-летнюю историю развития. До настоящего времени структуры ВС в основном воспроизводились в суперЭВМ. Наибольшее применение ВС нашли в суперЭВМ типа Gray - I, II, III.

Cyber - 205, 305 ... (CDC).

ВС в этих суперЭВМ комбинировали в определенных соотношениях векторную и конвейерную обработку. Опыт построения этих систем показал, что все суперЭВМ являются по существу специализированными вычислителями, чем больше быстродействие они обеспечивают, тем уже становился класс алгоритма, которые они эффективно обрабатывают. Универсальных структур ЭВМ не существует. Эффективной структурой ВС следует считать ту, у которой структура в наибольшей степени соответствует (или может быть подстроена) под структуру задач, решаемых на этой системе.