Смекни!
smekni.com

Системы с ожиданием (стр. 3 из 3)

Вероятность того, что будет задержано два самолета, находится аналогично (рассматривается два задерживаемых самолета между двумя незадерживаемыми) путем вычисления вероятности совместного появления событий:

t1 < T - для первого задерживаемого самолета, следующего за незадерживаемым;

t2 < 2T- t1 - для второго задерживаемого самолета, следующего за первым задерживаемым;

t < 3T- t1 - t2 - для незадерживаемого самолета, следующего непосредственно за двумя задерживаемыми.

В результате для двух задерживаемых самолетов получаем

.(14.55)

Общее выражение для вероятности того, что задерживается n-1 самолетов, имеет вид an Tn-1 e-nT , где an- коэффициент, зависящий только от n. Очевидно, что должно выполняться соотношение

(14.56)

или

(14.57)

где величина UºTe-T для малых T определяется однозначно, следовательно, T можно выразить как функцию от U:

(14.58)

Используя то обстоятельство, что начало координат - кратный полюс, имеем

(14.59)

Следовательно, разложив подынтегральное выражение в ряд и выбрав коэффициент при T-1 , можно найти вычет.

Вероятность того, что один за другим задерживаются n-1 самолетов, равна

(14.60)

Используя формулу Стирлинга для n!, Пирси приводит ряд кривых для этого распределения.

Среднее число самолетов, находящихся в системе (с учетом первого самолета, совершающего посадку без ожидания), равно

(14.61)

Это выражение можно легко найти, дифференцируя выражение (14.56) по T и производя упрощения. (Заметим, что при T=1 задерживаются все самолеты). Аналогично находим второй начальный момент, он равен

.

Доля задерживаемых самолетов определяется как отношение среднего числа самолетов, находящихся в системе, без учета самолета, совершающего посадку, к среднему числу самолетов:

.

Распределение длительности посадки найдем путем следующих рассуждений. Все промежутки времени длительностью t<T имеют нулевую частоту; промежутки времени длительностью t=T появляются с частотой t; доля задерживаемых самолетов, т.е. доля промежутков времени длительностью t>T, появляется с частотой 1-T появления незадерживаемых самолетов, умноженной на вероятность их прибытия, т.е. на e-(t+T) . Используем единичную функцию H(T- t) (которая равна единице для положительных значений аргумента и равна нулю для отрицательных; ее производная является дельта-функцией) и дельта-функцию d(T-t), чтобы представить это распределение в виде

Теперь, используя интегральное уравнение Линдли, можно получить распределение времени ожидания. Путем детального анализа Пирси находит выражение для распределения в промежутке времени t, mT < t < (m+1)T:

откуда после интегрирования по t (0£ t £¥) он определяет T как долю задерживаемых самолетов. Заметим, что при суммировании по m необходимо рассматривать интервалы (mT,(m+1)T). Отсюда находим также среднее время ожидания

.

Заметим, что время ожидания увеличивается с ростом T. Приведенное выше распределение дает критерии для определения необходимой пропускной способности аэропорта.