Смекни!
smekni.com

Труднорешаемые задачи (стр. 2 из 2)

Исходя отчасти из предшествующих исследований нейронов (основных активных клеток, составляющих нервную систему животных), проведенных Маккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно рассматривать как устройства, оперирующие двоичными числами. В 30-е годы XX в. пионеры информатики, в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально подходит для электронно-вычислительных устройств. Маккалох и Питтс предложили конструкцию сети из электронных "нейронов" и показали, что подобная сеть может выполнять практически любые вообразимые числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, т.е. она обладает всеми чертами интеллекта.

Теории Маккаллоха-Питтса в сочетании с книгами Винера вызвали огромный интерес к разумным машинам. В 40-60-е годы все больше кибернетиков из университетов и частных фирм запирались в лабораториях и мастерских, напряженно работая над теорией функционирования мозга и методично припаивая электронные компоненты моделей нейронов.

Из этого кибернетического, или нейромодельного, подхода к машинному разуму скоро сформировался так называемый "восходящий метод" - движение от простых аналогов нервной системы примитивных существ, обладающих малым числом нейронов, к сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании "адаптивной сети", "самоорганизующейся системы" или "обучающейся машины" - все эти названия разные исследователи использовали для обозначения устройств, способных следить за окружающей обстановкой и с помощью обратной связи изменять свое поведение, т.е. вести себя так же как живые организмы. Естественно, отнюдь не во всех случаях возможна аналогия с живыми организмами. Как однажды заметили Уоррен Маккаллох и его сотрудник Майкл Арбиб, "если по весне вам захотелось обзавестись возлюбленной, не стоит брать амебу и ждать пока она эволюционирует".

Но дело здесь не только во времени. Основной трудностью, с которой столкнулся "восходящий метод" на заре своего существования, была высокая стоимость электронных элементов. Слишком дорогой оказывалась даже модель нервной системы муравья, состоящая из 20 тыс. нейронов, не говоря уже о нервной системе человека, включающей около 100 млрд. нейронов. Даже самые совершенные кибернетические модели содержали лишь неколько сотен нейронов. Столь ограниченные возможности обескуражили многих исследователей того периода.

Заключение

В настоящее время наличие сверхпроизводительных микропропроцессоров и дешевизна электронных компонентов позволяют делать значительные успехи в алгоритмическом моделировании искусственного интеллекта. Такой подход дает определенные результаты на цифровых ЭВМ общего назначения и заключается в моделировании процессов жизнедеятельности и мышления с использованием численных алгоритмов, реализующих искусственный интеллект. Здесь можно привести много примеров, начиная от простой программы игрушки “тамагочи” и заканчивая моделями колонии живых организмов и шахматными программами, способными обыграть известных гроссмейстеров. Сегодня этот подход поддерживается практически всеми крупнейшими разработчиками аппаратного и программного обеспечения, поскольку достижения при создании эвристических алгоритмов используются и в узкоспециальных, прикладных областях при решении сложных задач, принося значительную прибыль разработчикам.

Другие подходы сводятся к созданию аппаратуры, специально ориентированной на те или иные задачи, как правило, эти устройства не общего назначения (аналоговые вычислительные цепи и машины, самоорганизующиеся системы, перцептроны и т.п.). С учетом дальнейшего развития вычислительной техники этот подход может оказаться более перспективным, чем предполагалось в 50-80гг.