Смекни!
smekni.com

MathCad

Рис. 1. Панели инструментов программы Маthcad для ввода формул.

Знак присваивания изображается как «:=», а вводится при помощи кнопки Assign Value (Присвоить значение) на панели инструментов Evaluation (Вычисление). Слева от знака присваивания указывают имя переменной. Оно может содержать латинские и греческие буквы, цифры, символы «¢»,«_» и «¥», а также описательный индекс. Описательный индекс вводится с помощью символа «.» и изображается как нижний индекс, но является частью имени переменной, например Vinit. «Настоящие» индексы, определяющие отдельный элемент вектора или матрицы, задаются по-другому.

Переменную, которой присвоено значение, можно использовать далее в документе в вычисляемых выражениях. Чтобы узнать значение переменной, следует использо­вать оператор вычисления.

Примеры ввода формул:

MathCad

Ввод текста

Текст, помещенный в рабочий лист, содержит комментарии и описания и предназна­чен для ознакомления, а не для использования в расчетах. Программа MathCad опре­деляет назначение текущего блока автоматически при первом нажатии клавиши ПРОБЕЛ. Если введенный текст не может быть интерпретирован как формула, блок преобразуется в текстовый и последующие данные рассматриваются как текст. Создать текстовый блок без использования автоматических средств позволяет команда Insert > Text Region (Вставка > Текстовый блок).

Иногда требуется встроить формулу внутрь текстового блока. Для этого служит команда Insert > Math Region (Вставка > Формула).

Форматирование формул и текста

Для форматирования формул и текста в программе MathCad используется панель инструментов Formatting (Форматирование). С ее помощью можно индивидуально отформатировать любую формулу или текстовый блок, задав гарнитуру и размер шрифта, а также полужирное, курсивное или подчеркнутое начертание символов. В текстовых блоках можно также задавать тип выравнивания и применять марки­рованные и нумерованные списки.

В качестве средств автоматизации используются стили оформления. Выбрать стиль оформления текстового блока или элемента формулы можно из списка Style (Стиль) на панели инструментов Formatting (Форматирование). Для формул и текстовых блоков применяются разные наборы стилей. Чтобы изменить стиль оформления формулы или создать новый стиль, используется команда Formate Equation (Формат ^ Выражение). Изменение стандартных стилей Variables (Переменные) и Constants (Константы) влияет на отображение формул по всему документу. Стиль оформления имени переменной учитывается при ее опре­делении. Так, переменные хил- рассматриваются как различные и не взаимозаме­няемы. При оформлении текстовых блоков можно использовать более обширный набор стилей. Настройка стилей текстовых блоков производится при помощи команды Format > Style

(Формат > Стиль).

Работа с матрицами

Векторы и матрицы рассматриваются в программе MathCad как одномерные и дву­мерные массивы данных. Число строк и столбцов матрицы задается в диалоговом окне Insert Matrix (Вставка матрицы), которое открывают командой Insert > Matrix (Вставка > Матрица). Вектор задается как матрица, имеющая один столбец.

После щелчка на кнопке ОК в формулу вставляется матрица, содержащая вместо элементов заполнители. Вместо каждого заполнителя надо вставить число, пере­менную или выражение.

Для матриц определены следующие операции: сложение, умножение на число, перемножение и прочие. Допустимо использование матриц вместо скалярных выра­жений: в этом случае предполагается, что указанные действия должны быть при­менены к каждому элементу матрицы, и результат также представляется в виде матрицы. Например, выражение М+ 3, где М — матрица, означает, что к каждому элементу матрицы прибавляется число 3. Если требуется явно указать необходимость поэлементного применения операции к матрице, используют знак векторизации, для ввода которого служит кнопка Vectorize (Векторизация) на панели инструментов Matrix (Матрица). Например:

MathCad

Рис. 2 Вычисление матриц

Для работы с элементами матрицы используют индексы элементов. Нумерация строк и столбцов матрицы начинается с нуля. Индекс элемента задается числом, переменной или выражением и отображается как нижний индекс. Он вводится после щелчка на кнопке Subscript (Индекс) на панели инструментов Matrix (Матрица). Пара индексов, определяющих элемент матрицы, разделяется запятой. Иногда (напри­мер, при построении графиков) требуется выделить вектор, представляющий собой столбец матрицы. Номер столбца матрицы отображается как верхний индекс, заклю­ченный в угловые скобки, например М<0>. Для его ввода используется кнопка Matrix Column (Столбец) на панели инструментов Matrix (Матрица). Чтобы задать общую формулу элементов матрицы, типа МI,J:= i +j, используют диапазоны. Диапазон фактически представляет собой вектор, содержащий арифмети­ческую прогрессию, определенную первым, вторым и последним элементами. Чтобы задать диапазон, следует указать значение первого элемента, через запятую значение второго и через точку с запятой значение последнего элемента. Точка с запятой при задании диапазона отображается как две точки (..). Диапазон можно использовать как значение переменной, например x:= 0,0.01.. 1.

Если разность прогрессии равна единице (то есть, элементы просто нумеруются), значение второго элемента и соответствующую запятую опускают. Например, чтобы сформировать по приведенной выше формуле матрицу размером 6х6, перед этой формулой надо указать

i:= 0..5 j:= 0..5. При формировании матрицы путем присвое­ния значения ее элементам, размеры матрицы можно не задавать заранее. Всем неопределенным элементам автоматически присваиваются нулевые значения. Например, формула М5,5:=1 создает матрицу М размером 6х6, у которой все эле­менты, кроме расположенного в правом нижнем углу, равны 0.

Стандартные и пользовательские функции

Произвольные зависимости между входными и выходными параметрами задаются при помощи функций. Функции принимают набор параметров и возвращают зна­чение, скалярное или векторное (матричное). В формулах можно использовать стан­дартные встроенные функции, а также функции, определенные пользователем.

Чтобы использовать функцию в выражении, надо определить значения входных параметров в скобках после имени функции. Имена простейших математических функций можно ввести с панели инструментов Arithmetic (Счет). Информацию о других функциях можно почерпнуть в справочной системе. Вставить в выражение стандарт­ную функцию можно при помощи команды Insert > Function (Вставка > Функция). В диа­логовом окне Insert Function (Вставка функции) слева выбирается категория, к которой относится функция, а справа — конкретная функция. В нижней части окна выдается информация о выбранной функции. При вводе функции через это диалоговое окно автоматически добавляются скобки и заполнители для значений параметров.

Пользовательские функции должны быть сначала определены. Определение зада­ется при помощи оператора присваивания. В левой части указывается имя пользо­вательской функции и, в скобках, формальные параметры — переменные, от которых она зависит. Справа от знака присваивания эти переменные должны использоваться в выражении. При использовании пользовательской функции в последующих фор­мулах ее имя вводят вручную. В диалоговом окне Insert Function (Вставка функции) оно не отображается.

Приведем обозначения основных из [Dm1] них:

1. Тригонометрические и обратные функции:

sin(z), cos(z), tan(z), asin(z), acos(z), atan(z)

z - угол в радианах

2. Гиперболические и обратные функции:

sinh(z), cosh(z), tanh(z), asinh(z), acosh(z), atanh(z)

3. Экспоненциальные и логарифмические:

exp(z) - ez

ln(z) - натуральный логарифм

log(z) - десятичный логарифм

4. Cтатистические функции:

mean(x) - среднее значение

var(x) - дисперсия

stdev(x) - среднеквадратическое отклонение

cnorm(x)- функция нормального рапределения

erf(x) - функция ошибки

Г(x) - гамма-функция Эйлера

5. Функции Бесселя:

J0(x), J1(x), Jn(n,x) - функции Бесселя первого порядка

Y0(x), Y1(x), Yn(n,x) - функции Бесселя второго порядка

6. Функции комплексного переменного:

Re(z) - вещественная часть комплексного числа

Im(z) - мнимая часть комплексного числа

arg(z) - аргумент комплексного числа

7. Преобразование Фурье:

U:=fft(V) - прямое преобразование (V- вещественное)

V:=ifft(U) - обратное преобразование (V- вещественное)

U:=cfft(V) - прямое преобразование (V- комплексное)

V:=icfft(U) - обратное преобразование (V- комплексное)

8. Корреляционная функция - позволяет рассчитывать коэффициент корреляции двух векторов vx и vy и определить уравнение линейной регрессии:

corr(vx,vy) - коэффициент корреляции

slope(vx,vy) - коэффициент наклона линии регрессии

intercept(vx,vy) - начальная координата линии регрессии

9. Линейная интерполяция:

linterp(vx,vy,x)

vx,vy- векторы значений аргумента и функций. x- значение аргумента,

для которого проводится интерполяция

10.Функция для определения корней алгебраических и трансцендентных уравнений:

root(уравнения, переменная) - значение переменной, когда уравнение равно нулю

11.Датчик случайных чисел:

rnd(x) - случайное число с равномерным распределением от 0 до x

12.Целая часть переменной:

floor(x)- ближайшее наименьшее целое число

ceil(x)- ближайшее наибольшее целое число

13.Выделение остатка:

mod(x,y)- остаток от деления x на y

14.Остановка итерации:

until(x,y) - когда x<0

15.Функция условного перехода:

if(условие,x,y) - если условие выполняется, то функция равняется x, иначе y

16.Единичная функция (функция Хевисайда):

Ф(x) - если x>0. То функция равна 1, иначе 0

17.Логические выражения и операции. Простейшими видами логических выражений являются следующие: логическая константа, логическая константа, логическая константа, логическая переменная, выражение отношения. Например, при x:=0.5 операции отношения присваивают L истину или ложь (1 или 0):