Const MAX_FIB = 1476 ' Максимальное значение.
Dim FibValues(0 To MAX_FIB) As Double
Private Function Fib(N As Integer) As Double
' Вычислить значение, если оно не находится в таблице.
If FibValues(N) < 0 Then _
FibValues(M) = Fib(N - 1) + Fib(N - 2)
Fib = FibValues(N)
End Function
При запуске программы, она присваивает каждому элементу в массиве FibValues значение -1. Затем она присваивает FibValues(0) значение 0, и FibValues(1) — значение 1. Это условия остановки рекурсии.
При выполнении функции, она проверяет, находится ли уже в массиве значение, которое ей требуется. Если его там нет, она, как и раньше, рекурсивно вычисляет это значение и сохраняет его в массиве для дальнейшего использования.
Программа Fibo2 использует этот метод для вычисления чисел Фибоначчи. Программа может быстро вычислить Fib(N) для N до 100 или 200. Но если вы попытаетесь вычислить Fib(1476), то программа выполнит последовательность рекурсивных вызовов глубиной 1476 уровней, которая вероятно переполнит стек вашей системы.
Тем не менее, по мере того, как программа вычисляет новые значения, она заполняет массив FibValues. Значения из массива позволяют функции вычислять все большие и большие значения без глубокой рекурсии. Например, если вычислить последовательно Fib(100), Fib(200), Fib(300), и т.д. то, в конце концов, можно будет заполнить массив значений FibValues и вычислить максимальное возможно значение Fib(1476).
Процесс медленного заполнения массива FibValues приводит к новому методу вычисления чисел Фибоначчи. Когда программа инициализирует массив FibValues, она может заранее вычислить все числа Фибоначчи.
Private Sub InitializeFibValues()
Dim i As Integer
FibValues(0) = 0 ' Инициализация условий остановки.
FibValues(1) = 1
For i = 2 To MAX_FIB
FibValues(i) = FibValues(i - 1) + FibValues(i - 2)
Next i
End Sub
Private Function Fib(N As Integer) As Duble
Fib - FibValues(N)
End Function
=====104
Определенное время в этом алгоритме занимает составление массива с табличными значениями. Но после того как массив создан, для получения элемента из массива требуется всего один шаг. Ни процедура инициализации, ни функция Fib не используют рекурсию, поэтому ни одна из них не приведет к исчерпанию стекового пространства. Программа Fibo3 демонстрирует этот подход.
Стоит упомянуть еще один метод вычисления чисел Фибоначчи. Первое рекурсивное определение функции Фибоначчи использует подход сверху вниз. Для получения значения Fib(N), алгоритм рекурсивно вычисляет Fib(N - 1) и Fib(N - 2) и затем складывает их.
Подпрограмма InitializeFibValues, с другой стороны, работает снизу вверх. Она начинает со значений Fib(0) и Fib(1). Она затем использует меньшие значения для вычисления больших, до тех пор, пока таблица не заполнится.
Вы можете использовать тот же подход снизу вверх для прямого вычисления значений функции Фибоначчи каждый раз, когда вам потребуется значение. Этот метод требует больше времени, чем выборка значений из массива, но не требует дополнительной памяти для таблицы значений. Это пример пространственно‑временного компромисса. Использование большего объема памяти для хранения таблицы значений делает выполнение алгоритма более быстрым.
Private Function Fib(N As Integer) As Double
Dim Fib_i_minus_1 As Double
Dim Fib_i_minus_2 As Double
Dim fib_i As Double
Dim i As Integer
If N <= 1 Then
Fib = N
Else
Fib_i_minus_2 = 0 ' Вначале Fib(0)
Fib_i_minus_1 = 1 ' Вначале Fib(1)
For i = 2 To N
fib_i = Fib_i_minus_1 + Fib_i_minus_2
Fib_i_minus_2 = Fib_i_minus_1
Fib_i_minus_1 = fib_i
Next i
Fib = fib_i
End If
End Function
Этой версии требуется порядка O(N) шагов для вычисления Fib(N). Это больше, чем один шаг, который требовался в предыдущей версии, но намного быстрее, чем O(Fib(N)) шагов в исходной версии алгоритма. На компьютере с процессором Pentium с тактовой частотой 90 МГц, исходному рекурсивному алгоритму потребовалось почти 52 секунды для вычисления Fib(32) = 2.178.309. Время вычисления Fib(1476) » 1,31E+308 при помощи нового алгоритма пренебрежимо мало. Программа Fibo4 использует этот метод для вычисления чисел Фибоначчи.
=====105
Устранение рекурсии в общем случае
Функции факториала, наибольшего общего делителя, и BigAdd можно упростить устранением хвостовой рекурсии. Функцию, вычисляющую числа Фибоначчи, можно упростить, используя таблицу значений или переформулировав задачу с использованием подхода снизу вверх.
Некоторые рекурсивные алгоритмы настолько сложны, то применение этих методов затруднено или невозможно. Достаточно сложно было бы написать нерекурсивный алгоритм для построения кривых Гильберта или Серпинского с нуля. Другие рекурсивные алгоритмы более просты.
Ранее было показано, что алгоритм, который рисует кривые Гильберта или Серпинского, должен включать порядка O(N4) шагов, так что исходные рекурсивные версии достаточно хороши. Они достигают почти максимальной возможной производительности при приемлемой глубине рекурсии.
Тем не менее, встречаются другие сложные алгоритмы, которые имеют высокую глубину вложенности рекурсии, но к которым неприменимо устранение хвостовой рекурсии. В этом случае, все еще возможно преобразование рекурсивного алгоритма в нерекурсивный.
Основной подход при этом заключается в том, чтобы рассмотреть порядок выполнения рекурсии на компьютере и затем попытаться сымитировать шаги, выполняемые компьютером. Затем новый алгоритм будет сам осуществлять «рекурсию» вместо того, чтобы всю работу выполнял компьютер.
Поскольку новый алгоритм выполняет практически те же шаги, что и компьютер, можно поинтересоваться, возрастет ли скорость вычислений. В Visual Basic это обычно не выполняется. Компьютер может выполнять задачи, которые требуются при рекурсии, быстрее, чем вы можете их имитировать. Тем не менее, оперирование этими деталями самостоятельно обеспечивает лучший контроль над выделением памяти под локальные переменные, и позволяет избежать глубокого уровня вложенности рекурсии.
Обычно, при вызове подпрограммы, система выполняет три вещи. Во‑первых, сохраняет данные, которые нужны ей для продолжения выполнения после завершения подпрограммы. Во‑вторых, она проводит подготовку к вызову подпрограммы и передает ей управление. В‑третьих, когда вызываемая процедура завершается, система восстанавливает данные, сохраненные на первом шаге, и передает управление назад в соответствующую точку программы. Если вы преобразуете рекурсивную процедуру в нерекурсивную, вам приходится выполнять эти три шага самостоятельно.
Рассмотрим следующую обобщенную рекурсивную процедуру:
Sub Subr(num)
<1 блок кода>
Subr(<параметры>)
<2 блок кода>
End Sub
Поскольку после рекурсивного шага есть еще операторы, вы не можете использовать устранение хвостовой рекурсии для этого алгоритма.
=====105
Вначале пометим первые строки в 1 и 2 блоках кода. Затем эти метки будут использоваться для определения места, с которого требуется продолжить выполнение при возврате из «рекурсии». Эти метки используются только для того, чтобы помочь вам понять, что делает алгоритм — они не являются частью кода Visual Basic. В этом примере метки будут выглядеть так:
Sub Subr(num)
1 <1 блок кода>
Subr(<параметры>)
2 <2 блок кода>
End Sub
Используем специальную метку «0» для обозначения конца «рекурсии». Теперь можно переписать процедуру без использования рекурсии, например, так:
Sub Subr(num)
Dim pc As Integer ' Определяет, где нужно продолжить рекурсию.
pc = 1 ' Начать сначала.
Do
Select Case pc
Case 1
<1 блок кода>
If (достигнуто условие остановки) Then
' Пропустить рекурсию и перейти к блоку 2.
pc = 2
Else
' Сохранить переменные, нужные после рекурсии.
' Сохранить pc = 2. Точка, с которой продолжится
' выполнение после возврата из "рекурсии".
' Установить переменные, нужные для рекурсии.
' Например, num = num - 1.
:
' Перейти к блоку 1 для начала рекурсии.
pc = 1
End If
Case 2 ' Выполнить 2 блок кода
<2 блок кода>
pc = 0
Case 0
If (это последняя рекурсия) Then Exit Do
' Иначе восстановить pc и другие переменные,
' сохраненные перед рекурсией.
End Select
Loop
End Sub
======106
Переменная pc, которая соответствует счетчику программы, сообщает процедуре, какой шаг она должна выполнить следующим. Например, при pc = 1, процедура должна выполнить 1 блок кода.
Когда процедура достигает условия остановки, она не выполняет рекурсию. Вместо этого, она присваивает pc значение 2, и продолжает выполнение 2 блока кода.
Если процедура не достигла условия остановки, она выполняет «рекурсию». Для этого она сохраняет значения всех локальных переменных, которые ей понадобятся позже после завершения «рекурсии». Она также сохраняет значение pc для участка кода, который она будет выполнять после завершения «рекурсии». В этом примере следующим выполняется 2 блок кода, поэтому она сохраняет 2 в качестве следующего значения pc. Самый простой способ сохранения значений локальных переменных и pc состоит в использовании стеков, подобных тем, которые описывались в 3 главе.
Реальный пример поможет вам понять эту схему. Рассмотрим слегка измененную версию функции факториала. В нем переписана только подпрограмма, которая возвращает свое значение при помощи переменной, а не функции, для упрощения работы.
Private Sub Factorial(num As Integer, value As Integer)
Dim partial As Integer
1 If num <= 1 Then
value = 1
Else
Factorial(num - 1, partial)
2 value = num * partial
End If
End Sub
После возврата процедуры из рекурсии, требуется узнать исходное значение переменной num, чтобы выполнить операцию умножения value = num * partial. Поскольку процедуре требуется доступ к значению num после возврата из рекурсии, она должна сохранять значение переменных pc и num до начала рекурсии.
Следующая процедура сохраняет эти значения в двух стеках на основе массивов. При подготовке к рекурсии, она проталкивает значения переменных num и pc в стеки. После завершения рекурсии, она выталкивает добавленные последними значения из стеков. Следующий код демонстрирует нерекурсивную версию подпрограммы вычисления факториала.