Смекни!
smekni.com

VB, MS Access, VC++, Delphi, Builder C++ принципы(технология), алгоритмы программирования (стр. 35 из 72)

==========176

Б+деревья

Б+деревья часто используются для хранения больших записей. Типичное Б‑дерево может содержать записи о сотрудниках, каждая из которых может занимать несколько килобайт памяти. Записи могли бы располагаться в Б‑дереве в соответствии с ключевым полем, например фамилией сотрудника или его идентификационным номером.

В этом случае упорядочение элементов может быть достаточно медленным. Чтобы слить два блока, программе может понадобиться переместить множество записей, каждая из которых может быть достаточно большой. Аналогично, для разбиения блока может потребоваться переместить множество записей большого объема.

Чтобы избежать перемещения больших блоков данных, программа может записывать во внутренних узлах Б‑дерева только ключи. При этом узлы также содержат ссылки на сами записи данных, которые записаны в другом месте. Теперь, если программе требуется переупорядочить блоки, то нужно переместить только ключи и указатели, а не сами записи. Этот тип Б‑дерева называется Б+деревом (B+tree).

То, что элементы в Б+дереве достаточно малы, также позволяет программе хранить больше ключей в каждом узле. При том же размере узла, программа может увеличить порядок дерева и сделать его более коротким.

Например, предположим, что имеется Б‑дерево 2 порядка, то есть каждый узел имеет от трех до пяти дочерних узлов. Такое дерево, содержащее миллион записей, должно было бы иметь высоту между log5(1.000.000) и log3(1.000.000), или между 9 и 13. Чтобы найти элемент в таком дереве, программа должна выполнить от 9 до 13 обращений к диску.

Теперь допустим, что те же миллион записей находятся в Б+дереве, узлы которого имеют примерно тот же размер в байтах. Поскольку в узлах Б+дерева содержатся только ключи, то в каждом узле дерева может храниться до 20 ключей к записям. В этом случае, каждый узел будет иметь от 11 до 21 дочерних узлов, поэтому высота дерева будет от log21(1.000.000) до log11(1.000.000), или между 5 и 6. Чтобы найти элемент, программе понадобится всего 6 обращений к диску для нахождения его ключа, и еще одно обращение к диску, чтобы считать сам элемент.

В Б+деревьях также просто связать с набором записей множество ключей. В системе, оперирующей записями о сотрудниках, одно Б+дерево может использовать в качестве ключей фамилии, а другое — идентификационные номера социального страхования. Оба дерева будут содержать указатели на записи данных, которые будут находиться за пределами деревьев.

Улучшение производительности Б‑деревьев

В этом разделе описаны два метода улучшения производительности Б‑ и Б+деревьев. Первый метод позволяет перераспределить элементы между узлами одного уровня, чтобы избежать разбиения блоков. Второй позволяет помещать пустые ячейки в дерево, чтобы уменьшить вероятность необходимости разбиения блоков в будущем.

=======177

Балансировка для устранения разбиения блоков

При добавлении элемента к блоку, который уже заполнен, блок разбивается на два. Этого можно избежать, если выполнить балансировку этого узла с одним из узлов на том же уровне. Например, вставка нового элемента Q в Б‑дерево, показанное слева на рис. 7.20 обычно вызывает разбиение блока. Этого можно избежать, выполнив балансировку узла, содержащего J, K, L и N и левого узла на том же уровне, содержащего B и E. При этом получается дерево, показанное на рис. 7.20 справа.

Такая балансировка имеет ряд преимуществ. Во‑первых, при этом блоки используются более эффективно. В них находится меньше пустых ячеек, при этом уменьшится количество расходуемой понапрасну памяти.

Что более важно, если не нужно будет разбиение блоков, то не понадобится и перемещение элемента в родительский узел. Это предотвращает возникновение длительной последовательности разбиений блоков.

С другой стороны, уменьшение числа неиспользуемых элементов в дереве увеличивает вероятность необходимости разбиения блоков в будущем. Так как в дереве остается меньше свободных ячеек, то более вероятно, что узел окажется уже полон, когда понадобится вставить новый элемент.

Добавление свободного пространства

Предположим, что имеется небольшая база данных клиентов, содержащая 10 записей. Можно загружать записи в Б‑дерево так, чтобы они заполняли каждый блок целиком, как показано на рис. 7.21. При этом дерево содержит мало свободного пространства, и вставка нового элемента сразу же приводит к разбиению блоков. Фактически, так как все блоки заполнены, она вызовет последовательность разбиения блоков, которая дойдет до корневого узла.

Вместо плотного заполнения дерева, можно добавлять к каждому узлу некоторое количество пустых ячеек, как показано на рис. 7.22. Хотя при этом дерево будет несколько больше, в него можно будет добавлять элементы, не вызывая сразу же последовательность разбиений блоков. После работы с деревом в течение некоторого времени, количество свободного пространства может уменьшиться до такой степени, при которой разбиения блоков могут возникнуть. Тогда можно перестроить дерево, добавив больше свободного пространства.

В реальных приложениях Б‑деревья обычно имеют намного больший порядок, чем деревья, приведенные здесь. Добавление свободного пространства в дерево значительно уменьшает необходимость балансировки и разбиения блоков. Например, можно добавить в Б‑дерево 10 порядка 10 процентов свободного пространства, чтобы в каждом узле было место еще для двух элементов. С таким деревом можно будет работать достаточно долго, прежде чем возникнут длинные цепочки разбиений блоков.

Это очередной пример пространственно‑временного компромисса. Добавка в узлы пустого пространства увеличивает размер дерева, но уменьшает вероятность разбиения блоков.

@Рис. 7.20. Балансировка для устранения разбиения блоков

=======178

@Рис. 7.21. Плотное заполнение Б‑дерева

Вопросы, связанные с обращением к диску

Б‑ и Б+деревья хорошо подходят для создания больших приложений баз данных. Типичное Б+дерево может содержать сотни, тысячи и даже миллионы записей. В этом случае в любой момент времени в памяти будет находиться только небольшая часть дерева и при каждом обращении к узлу, программе понадобится загрузить его с диска. В этом разделе описаны три момента, учитывать которые особенно важно, если данные находятся на диске: применение псевдоуказателей, выбор размера блоков, и кэширование корневого узла.

Псевдоуказатели

Коллекции и ссылки на объекты удобны для построения деревьев в памяти, но они могут быть бесполезны при хранении дерева на диске. Нельзя создать ссылку на запись в файле.

Вместо этого можно использовать методы работы с псевдоуказателями, похожие на те, которые были описаны во 2 главе. Вместо использования в качестве указателей на узлы дерева ссылок на объекты при этом используется номер записи узла в файле. Предположим, что Б+дерево 12 порядка использует 80‑байтные ключи. Структуру данных узла можно определить в следующем коде:

Global Const ORDER = 12

Global Const KEYS_PER_NODE = 2 * ORDER

Type BtreeNode

Key (1 To KEYS_PER_NODE) As String * 80 ' Ключи.

Child (0 To KEYS_PER_NODE) As Integer ' Указатели потомков.

End Type

Значения элементов массива Child представляют собой номера записей из дочерних узлов в файле. Произвольный доступ к данным Б+дерева из файла осуществляется при помощи записей, которые соответствуют структуре BtreeNode.

@Рис. 7.22. Свободное заполнение Б‑дерева

======179

Dim node As BtreeNode

Open Filename For Random As #filenum Len = Len(node)

После открытия файла, при помощи оператора Get можно выбрать любую запись:

Dim node As BtreeNode

' Выбрать запись с номером recnum.

Get #filenum, recnum, node

Чтобы упростить работу с Б+деревьями, можно хранить узлы Б+дерева и записи данных в разных файлах и использовать для управления каждым из них псевдоуказатели.

Когда счетчик ссылок на объект становится равным нулю, то Visual Basic автоматически уничтожает его. Это облегчает работу со структурами данных в памяти. С другой стороны, если программе больше не нужна какая‑либо запись в файле, то она не может просто очистить все ссылки на нее. Если сделать так, то программа больше не сможет использовать эту запись, но запись по‑прежнему будет занимать место в файле.

Программа должна следить за неиспользуемыми записями, чтобы позднее можно было использовать их. Один из простых способов сделать это — вести связный список неиспользуемых записей. Если запись больше не нужна, она добавляется в список. Если программе нужно место для новой записи, она удаляет одну запись из списка. Если программе нужно вставить еще один элемент, а список пуст, она увеличивает файл данных.

Выбор размера блока

Чтение данных с диска происходит блоками, которые называются кластерами. Размер кластера обычно составляет 512 или 1024 байта, или еще какое‑либо число байтов, равное степени двойки. Чтение всего кластера занимает столько же времени, сколько и чтение одного байта.

Можно воспользоваться этим фактом и создавать блоки, размер которых составляет целое число кластеров, а затем уместить в этот размер максимальное число ключей или записей. Например, предположим, что мы решили создавать блоки размером 2048 байт. При создании Б+дерева с 80‑байтными ключами в каждый блок можно поместить 24 ключа и 25 указателей (если указатель представляет собой 4‑байтное число типа long). Затем можно создать Б+дерево 12 порядка с блоками, которые определяются в следующем коде:

Global Const ORDER = 12

Global Const KEYS_PER_NODE = 2 * ORDER

Type BtreeNode

Key(1 To KEYS_PER_NODE) As String * 80 ' Ключ данных.

Child(0 To KEYS_PER_NODE) As Integer ' Указатели потомков.

End Type

=======180