======310
@Таблица 11.5. Преимущества и недостатки различных методов хеширования
Выбор наилучшего метода хеширования для данного приложения зависит от данных задачи и способов их использования. При применении разных схем достигаются различные компромиссы между занимаемой памятью, скоростью и простотой изменений. Табл. 11.5 может помочь вам выбрать наилучший алгоритм для вашего приложения.
=======311
В 6 и 7 главах обсуждались алгоритмы работы с деревьями. Данная глава посвящена более общей теме сетей. Сети играют важную роль во многих приложениях. Их можно использовать для моделирования таких объектов, как сеть улиц, телефонная или электрическая сеть, водопровод, канализация, водосток, сеть авиаперевозок или железных дорог. Менее очевидна возможность использования сетей для решения таких задач, как разбиение на районы, составление расписания методом критического пути, планирование коллективной работы или распределения работы.
Как и в определении деревьев, сетью (network) или графом (graph) называется набор узлов (nodes), соединенных ребрами (edges) или связями (links). Для графа, в отличие от дерева, не определено понятие родительского или дочернего узла.
С ребрами сети может быть связано соответствующее направление, тогда в этом случае сеть называется ориентированной сетью (directed network). Для каждой связи можно также определить ее цену (cost). Для сети дорог, например, цена может быть равна времени, которое займет проезд по отрезку дороги, представленному ребром сети. В телефонной сети цена может быть равна коэффициенту электрических потерь в кабеле, представленном связью. На рис. 12.1 показана небольшая ориентированная сеть, в которой числа рядом с ребрами соответствуют цене ребра.
Путем (path) между узлами A и B называется последовательность ребер, которая связывает два этих узла между собой. Если между любыми двумя узлами сети есть не больше одного ребра, то путь можно однозначно описать, перечислив входящие в него узлы. Так как такое описание проще представить наглядно, то пути по возможности описываются таким образом. На рис. 12.1 путь, проходящий через узлы B, E, F, G,E и D, соединяет узлы B и D.
Циклом (cycle) называется путь который связывает узел с ним самим. Путь E, F, G, E на рис. 12.1 является циклом. Путь называется простым (simple), если он не содержит циклов. Путь B, E, F, G, E, D не является простым, так как он содержит цикл E, F, G, E.
Если существует какой‑либо путь между двумя узлами, то должен существовать и простой путь между ними. Этот путь можно найти, если удалить все циклы из исходного пути. Например, если заменить цикл E, F, G, E в пути B, E, F, G, E, D на узел E, то получится простой путь B, E, D, связывающий узлы B и D.
=======313
@Рис. 12.1. Ориентированная сеть с ценой ребер
Сеть называется связной (connected), если между любыми двумя узлами существует хотя бы один путь. В ориентированной сети не всегда очевидно, является ли сеть связной. На рис. 12.2 сеть слева является связной. Сеть справа не является связной, так как не существует пути из узла E в узел C.
В 6 главе было описано несколько представлений деревьев. Большинство из них применимо также и для работы с сетями. Например, представления полными узлами, списком потомков (списком соседей для сетей) или нумерацией связей также могут использоваться для хранения сетей. За описанием этих представлений обратитесь к 6 главе.
@Рис. 12.2. Связная (слева) и несвязная (справа) сети
======314
Для различных приложений могут лучше подходить разные представления сети. Представление полными узлами обеспечивает хорошие результаты, если каждый узел в сети связан с небольшим числом ребер. Представление списком соседних узлов обеспечивает большую гибкость, чем представление полными узлами, а представление нумерацией связей, хотя его сложнее модифицировать, обеспечивает более высокую производительность.
Кроме этого, некоторые варианты представления ребер могут упростить работу с определенными типами сетей. Эти представления используют один класс для узлов и другой — для представления связей. Применение класса для связей облегчает работу со свойствами связей, такими, как цена связи.
Например, ориентированная сеть с ценой связей может использовать следующее определения для класса узла:
Public Id As Integer ' Номер узла.
Public Links As Collection ' Связи, ведущие к соседним узлам.
Можно использовать следующее определение класса связей:
Public ToNode As NetworkNode ' Узел на другом конце связи.
Public Cost As Integer ' Цена связи.
Используя эти определения, программа может найти связь с наименьшей ценой, используя следующий код:
Dim link As NetworkLink
Dim best_link As NetworkLink
Dim best_cost As Integer
best_cost = 32767
For Each link In node.Links
If link.cost < best_cost Then
Set best_link = link
best_cost = link.cost
End If
Next link
Классы node и link часто расширяются для удобства работы с конкретными алгоритмами. Например, к классу node часто добавляется флаг Marked. Если программа обращается к узлу, то она устанавливает значение поля Marked равным true, чтобы знать, что узел уже был проверен.
Программа, управляющая неориентированной сетью, может использовать немного другое представление. Класс node остается тем же, что и раньше, но класс link включает ссылку на оба узла на концах связи.
Public Node1 As NetwokNode ' Один из узлов на конце связи.
Public Node2 As NetwokNode ' Другой узел.
Public Cost As Integer ' Цена связи.
Для неориентированной сети, предыдущее представление использовало бы два объекта для представления каждой связи — по одному для каждого из направлений связи. В новой версии каждая связь представлена одним объектом. Это представление достаточно наглядно, поэтому оно используется далее в этой главе.
=======315
Используя это представление, программа NetEdit позволяет оперировать неориентированными сетями с ценой связей. Меню File (Файл) позволяет загружать и сохранять сети в файлах. Команды в меню Edit (Правка) позволяют вам вставлять и удалять узлы и связи. На рис. 12.3 показано окно программы NetEdit.
Директория OldSrc\Ch12 содержит программы, которые используют представление нумерацией связей. Эти программы немного сложнее понять, но они обычно работают быстрее. Они не описаны в тексте, но использованные в них методы похожи на те, которые применялись в программах, написанных для 4 версии Visual Basic. Например, обе программы Src\Ch12\Paths и OldSrc\Ch12\Paths находят кратчайший маршрут, используя описанный ниже алгоритм установки меток. Основное отличие между ними заключается в том, что первая программа использует коллекции и классы, а вторая — псевдоуказатели и представление нумерацией связей.
Корень дерева — это единственный узел, не имеющий родителя. Можно найти любой узел в сети, начав от корня и следуя по указателям на дочерние узлы. Таким образом, узел представляет основание дерева. Если ввести переменную, которая будет содержать указатель на корневой узел, то впоследствии можно будет получить доступ ко всем узлам в дереве.
Сети не всегда содержат узел, который занимает такое особое положение. В несвязной сети может не существовать способа обойти все узлы по связям, начав с одного узла.
Поэтому программы, работающие с сетями, обычно содержат полный список всех узлов в сети. Программа также может хранить полный список всех связей. При помощи этих списков можно легко выполнить какие‑либо действия над всеми узлами или связями в сети. Например, если программа хранит указатели на узлы и связи в коллекциях Nodes и Links, она может вывести сеть на экран при помощи следующего метода:
@Рис. 12.3. Программа NetEdit
=======316
Dim node As NetworkNode
dim link As NetworkLink
For Each link in links
' Нарисовать связь.
:
Next link
For Each node in nodes
' Нарисовать узел.
:
Next node
Программа NetEdit использует коллекции Nodes и Links для вывода сетей на экран.
Обход сети выполняется аналогично обходу дерева. Можно обходить сеть, используя либо обход в глубину, либо обход в ширину. Обход в ширину обычно похож на прямой обход дерева, хотя для сетей можно определить также обратный и даже симметричный обход.
Алгоритм для выполнения прямого обхода двоичного дерева, описанный в 6 главе, формулируется так:
Обратиться к узлу.
Выполнить рекурсивный прямой обход левого поддерева.
Выполнить рекурсивный прямой обход правого поддерева.
В дереве между связанными между собой узлами существует отношение родитель‑потомок. Так как алгоритм начинается с корневого узла и всегда выполняется сверху вниз, он не обращается дважды ни к одному узлу.
В сети узлы не обязательно связаны в направлении сверху вниз. Если попытаться применить к сети алгоритм прямого обхода, может возникнуть бесконечный цикл.
Чтобы избежать этого, алгоритм должен помечать узел после обращения к нему, при этом при поиске в соседних узлах, обращение происходит только к узлам, которые еще не были помечены. После того, как алгоритм завершит работу, все узлы в сети будут помечены (если сеть является связной). Алгоритм прямого обхода сети формулируется так:
Пометить узел.
Обратиться к узлу.
Выполнить рекурсивный обход не помеченных соседних узлов.
========317
В Visual Basic можно добавить флаг Marked к классу NetworkNode.
Public Id As Long
Public Marked As Boolean
Public Links As Collection
Класс NetworkNode может включать открытую процедуру для обхода сети, начиная с этого узла. Процедура узла PreorderPrint обращается ко всем непомеченным узлам, которые доступны из данного узла. Если сеть является связной, то при таком обходе произойдет обращение ко всем узлам сети.
Public Sub PreorderPrint()
Dim link As NoworkLink
Dim node As NetworkNode
' Пометить узел.
Marked = True
' Обратиться к непомеченным узлам.
For Each link In Links
' Найти соседний узел.
If link.Node1 Is Me Then
Set node = link.Node2
Else
Set node = link.Node1
End If
' Определить, требуется ли обращение к соседнему узлу.