Форма амплитудной огибающей зависит от типа музыкального инструмента. Однако, выделенные фазы характерны для звуков практически всех музыкальных инструментов (за исключением ударных).
Рис. 4.1.5. Фазы звукового сигнала
В общем случае технология создания звука (голоса инструмента) в современных синтезаторах заключается примерно в следующем (Рис. 4.1.6.).
Рис. 4.1.6. Создание голоса инструмента в современных синтезаторах
В настоящее время на звуковых картах устанавливаются синтезаторы, генерирующие звук с использованием:
- Частотной модуляции - FM- синтеза;
- Таблицы волн - WT- синтеза;
- Физического моделирования.
Высота звука зависит от частоты основного тона. Обертоны, даже если их сила велика, на ощущение высоты звука влияют мало, но придают ему своеобразную окраску. Способность человеческого уха разложить сложный звук на гармонические составляющие (основной тон и обертоны) позволяет различать звуки, например, отличить ноту до, взятую на кларнете, от той же ноты, взятой на рояле.
Таким образом, если синтезировать сигналы основного тона и обертонов, присущих звучанию конкретного инструмента, можно имитировать звук практически любой ноты этого инструмент.
Как уже отмечалось, высота созданного с помощью музыкального инструмента звукового сигнала характеризуется частотой и формой амплитудной огибающей. От формы амплитудной огибающей зависит также и спектральный состав обертонов. Обычно в фазе атаки количество высокочастотных составляющих максимально и постепенно уменьшается на стадиях поддержки и затухания. Особенно это свойственно звуку смычковых и клавишных инструментов. Следовательно, в простейшем случае для генерации голоса музыкального инструмента достаточно двух генераторов сигналов сложной формы: генератора несущей частоты и модулирующего генератора (Рис. 4.1.7.).
Рис. 4.1.7. Синтез звука на основе частотной модуляции
Генератор несущей частоты формирует сигнал основного тона, частотно-модулированный сигналом обертонов. Модулирующий генератор (генератор огибающей) управляет индексом модуляции сигнала основного тона и амплитудой результирующего сигнала. Управление генераторами (настройка частоты, выбор формы амплитудной огибающей, режим работы и т. п.) осуществляется путем подачи на его вход цифрового кода. Эти генераторы называются операторами.
Такой способ не позволяет подучить много спектральных составляющих звукового сигнала, поэтому в реальных FM-синтезаторах используется не два, а шесть и более операторов, модулирующих друг друга. При этом создание новых звуков осуществляется на основе эмпирических методов путем выбора определенных соотношений частот и схем соединения операторов. Варианты соединения операторов называют FM-алгоритмами. В первых звуковых картах использовался двухоператорный синтез, т. е. в создании голоса одного инструмента (тембра) участвовало только два генератора. FM-синте-заторы современных звуковых карт могут работать в двух-, четырех- и т. д. операторных режимах.
Каждый оператор может формировать сигнал одной из определенных форм (waveform). В соответствии с FM-алгоритмом операторы могут соединяться по-разному. Например, выходные сигналы операторов могут суммироваться (аддитивный синтез). При последовательном соединении с петлей обратной связи второй оператор будет задавать основной тон сигнала (являться генератором несущей), а первый – определять обертона (является модулятором). В этом случае сигнал с выхода первого оператора поступает на вход второго, а с выхода второго – на вход первого.
Звуковые карты с FM-синтезаторами обеспечивают повторяемость тембров, Например, партия скрипки, записанная с использованием FM-синтезатора одной модели, будет звучать практически без искажений на FM-синтезаторах других моделей. К настоящему времени накоплено большое количество FM-алгоритмов синтеза оригинальных звучаний (тембров).
Однако, поскольку процесс синтеза во времени совмещен с процессом исполнения музыки, значительно возрастают требования к суммарной производительности PC и собственно FM-синтезатора. Действительно, чем выше требования к точности воспроизведения звучания музыкального инструмента, тем большее количество генераторов должно быть задействовано. При этом алгоритм управления генераторами окажется достаточно сложным – ведь необходимо учитывать малейшие оттенки звучания, присущие конкретному инструменту. Для уменьшения объема вычислений в звуковых картах используются упрощенные алгоритмы, при этом голос инструмента формируется минимальным количеством генераторов. Это приводит к тому, что звуковые карты с FM-синтезом формируют мало благозвучных тембров. Вследствие этого имитация звучания реальных музыкальных инструментов оказывается очень грубой.
При использовании синтеза звука на основе таблицы волн (WТ- синтез) можно получить более реалистичное и качественное звучание, чем при использовании FM- синтеза. В WT- синтезаторе используются предварительно оцифрованные образы звучания реальных музыкальных инструментов, и других звуков. Каждый образ звучания, называемый патчем, или инструмент, включает в себя один или несколько сэмплов, организованных определенным образом. Сэмпл – это оцифрованный фрагмент реального звука, определенный тон музыкального инструмента или, например, звук выстрела.
Как известно, с помощью специальных алгоритмов даже по одному тону музыкального инструмента можно воспроизвести все остальные и таким образом полностью восстановить звучание инструмента во всем рабочем диапазоне частот (Рис. 4.1.8).
Рис. 4.1.8. Синтез звука с помощью WT - синтезатора
Например, если сэмпл, оцифрованный с частотой 44,1 кГц, воспроизвести с удвоенной частотой 88,2 кГц (вдвое быстрее), то высота звука возрастет на октаву. Если же воспроизводить сигнал с пониженной частотой, то высота звука уменьшится. Таким образом, путем воспроизведения сэмпла с разной скоростью, в принципе, можно получить звук любой высоты.
Такой принцип генерации звука реализован в так называемых сэмплерах – прообразах WT-синтезаторов. Сэмплер представляет собой устройство, с помощью которого можно записывать звуки реального инструмента с микрофона и затем воспроизводить с разной скоростью. Однако при генерации звука таким способом одновременно с изменением скорости воспроизведения и, соответственно, высоты звука будет изменяться длительность атаки и затухания сигнала, что приведет к искажению тембра синтезируемого инструмента.
Поэтому в WT-синтезаторах применяется другой способ изменения высоты звука. Оцифровке подвергаются несколько разных по высоте звуков реального музыкального инструмента, перекрывающих весь его рабочий частотный диапазон. Шаг по частоте должен быть достаточно мал, чтобы изменения тембра не были слышны. Для недорогих WT-синтезаторов достаточной считается оцифровка звучания музыкального инструмента с интервалом пол-октавы.
После оцифровки все сэмплы (или их часть) объединяются в патч, т. е. набор фрагментов звучания реального инструмента во всем рабочем диапазоне частот. Именно поэтому термины патч и инструмент являются синонимами.
При генерации звука определенной высоты WT-синтезатор определяет, в каком частотном диапазоне находится звук, выбирает сэмплы, частота которых наиболее близка к частоте генерируемого звука, и изменяет частоту основного тона этих сэмплов на конкретную величину.
Кроме того, звучание некоторых музыкальных инструментов становится более реалистичным и выразительным при одновременном воспроизведении нескольких сэмплов, т. е. звучание инструмента (голос) может формироваться путем наложения нескольких сэмплов.
В свою очередь, инструменты объединяются в банки. Банки с инструментами обычно хранятся в специальной ROM, выполненной в виде отдельной микросхемы памяти или интегрированной в микросхему WT-синтезатора. Кроме того, банки инструментов могут храниться на винчестере PC и перед работой загружаться в оперативную память (обычно располагается на звуковой карте) WT-синтезатора или RAM PC (технология Downloadable Sample, DLS).
Поскольку качество звука, синтезируемого WT- синтезатором звуковой карты, непосредственно зависит от качества патчей, желательно иметь сэмплы высокого качества (с высоким разрешением записи), что в свою очередь приводит к росту объема банка инструментов. Однако WT-синтезаторы обычных звуковых карт имеют небольшой объем памяти. Это достигается путем увеличения шага по частоте основного тона при оцифровке звука, уменьшения длительности сэмплов и, наконец, за счет компрессии сэмплов.
Минимальный набор банка инструментов для WT-синтезатора в соответствии со спецификацией General MIDI включает 128 инструментов.
В отличие от синтеза звука на основе таблицы волн, где источником сигнала является оцифрованные образы звуков реальных музыкальных инструментов, хранящихся в памяти синтезатора, физическое моделирование предусматривает использование математических моделей звукообразования реальных музыкальных инструментов для генерации в цифровом виде соответствующих волновым форм, которые затем преобразуются в звуковой сигнал при помощи ЦАП.