Тип сообщения | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
Смешанные сообщения | 0 | 1 | 1 | 1 | - | - | - | - |
Состояние | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
Запрос состояния | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
Рисунок 5. Кодирование поля "Тип сообщения" кадра LMI для смешанных сообщений.
Информационные элементы. На них отводятся один или несколько октетов в пределах кадра LMI, т. е. информационные элементы имеют переменную длину.
Процедурная характеристика LMI
LMI предусматривает три стратегии локального управления:
синхронное симплексное управление (ССУ);
синхронное дуплексное управление (СДУ);
асинхронное управление (АУ).
Синхронное симплексное управление. Для осуществления ССУ используются два типа сообщений: "Запрос состояния" (STATUS ENQUIRY) и "Состояние" (STATUS). С помощью этих сообщений LMI проверяет целостность соединения, уведомляет о включении или выключении, а также о готовности PVC.
Синхронное дуплексное управление. При использовании ССУ ответственность за генерацию сообщения "Запрос состояния" лежит полностью на ООД, а за генерацию сообщения "Состояние" - на АКД. Такая процедура приемлема для многих приложений, однако предпочтительнее, чтобы каждая из сторон интерфейса LMI могла обеспечивать требуемые для противоположной стороны параметры и коэффициент готовности.
СДУ - необязательная часть стандарта FR, которая может использоваться только при заключении соглашения между сторонами (абонент-сеть). СДУ отличается от ССУ только одним: сообщения "Запрос состояния" и "Состояние" имеют право передавать обе стороны интерфейса (рис. 9). При СДУ обе стороны интерфейса FR передают сообщение "Запрос состояния" через определенный временной интервал (T391), "требуют" ответа - сообщения "Состояние" (T392), а также запрашивают информацию о полном состоянии (N391).
Асинхронное управление. Главным недостатком ССУ и СДУ является потенциальная задержка информирования ООД (или АКД) об изменениях сетевых PVC. Например, при задержке, равной 60 с, и CIR 64 кбит/с пользователь направит в сеть приблизительно 3,5 Mбит данных, прежде чем получит информацию о состоянии PVC.
Стратегия АУ позволяет при изменении состояния PVC сети FR сразу передавать стандартные сообщения "Запрос состояния" и "Состояние". Эти сообщения содержат информацию только об отдельных PVC, которые изменили свое состояние. Проверка целостности соединения также основана на генерации последовательности специальных пронумерованных кадров и проверке корректности ее передачи. АУ может осуществляться совместно с ССУ и СДУ, однако если в сети FR применяются одновременно SVC и PVC, то рекомендуется использовать только АУ.
На первый взгляд, ретрансляция кадров является достаточно простым механизмом информационного обмена, но при более глубоком анализе оказывается чрезвычайно сложной. FR присущи практически все проблемы, связанные с обеспечением надежности и качества передачи сигналов (физический уровень ЭМВОС). При ее осуществлении необходимо обеспечивать синхронизацию и защиту от ошибок, которые, несмотря на высокое качество линий и каналов связи (это одно из основных условий применения FR), могут возникать в случае сбоев в работе аппаратно-программных средств связи.
Современный стандарт frame relay (FR) описывает протокол и интерфейс "пользователь-сеть" (ИПС) только для постоянных виртуальных каналов (ПВК), поэтому в основном используется в сетях со статическими методами и способами маршрутизации информационных потоков. Вместе с тем при создании глобальной широкополосной FR-сети, в которой будут применяться коммутируемые виртуальные каналы (КВК) и динамическое управление потоками информации, возникает необходимость объединения существующих корпоративных и локальных FR-сетей. Такая интеграция требует единого подхода к "философии" функционирования КВК и разработке стандарта интерфейса "сеть-сеть" (ИСС). В настоящее время разработкой и исследованием этого стандарта активно занимаются консорциум Frame Relay Forum (FRF), Американский национальный институт стандартизации (ANSI) и Международный союз электросвязи (МСЭ).
ИСС - это интерфейс (шлюз), основным назначением которого является обеспечение эффективного взаимодействия нескольких FR-сетей в рамках глобальной FR-сети с целью высококачественного обслуживания (с высокой вероятностью обслуживания заявки абонентов) пользователей при ведении ими информационного обмена. Следовательно, ИСС, в первую очередь, должен поддерживать высокоскоростную доставку данных, управление информационными потоками при возникновении перегрузок, сигнализацию и доставку служебной информации о состоянии канала связи. Проект стандарта FRF на ИСС аналогичен стандарту на ИПС, но, в отличие от последнего, рассматривает интерфейс локального управления (LMI) только с асинхронным дуплексным управлением (АДУ).
Коммутируемые виртуальные каналы
Общепризнанно, что FR становится более эффективным методом доставки сообщений при условии использования КВК (которые создаются только на период информационного обмена и "закрываются" сразу после него). Однако реализация КВК, кажущаяся на первый взгляд простой, представляет собой наиболее сложную проблему при стандартизации протоколов и интерфейсов FR. Это связано, в первую очередь, с различными взглядами производителей и международных организаций на применение КВК в сетях FR. Более того, существует точка зрения, в соответствии с которой вообще ставится под сомнение необходимость КВК. Поэтому FRF не принял стандартов на применение КВК.
Для цифровых сетей с интеграцией услуг был принят только один стандарт (рекомендация МСЭ Q.933), который описывает системы сигнализации для служб ретрансляции кадров. FRF согласился лишь с тем, что указанная рекомендация будет служить основой для будущего стандарта на использование КВК. Однако она посвящена лишь логической и процедурной характеристикам протокола FR для КВК в любых FR-сетях (не обязательно в цифровых сетях с интеграцией услуг).
Поля, используемые в кадре КВК, идентичны полям кадра LMI-процедур - за исключением полей "Вызываемый номер", "Тип сообщения" и "Информационные элементы".
Ретрансляция кадров и речевой трафик
Метод ретрансляции кадров разрабатывался как синхронный метод доставки данных в ISDN (и не только в ISDN). Соответственно, все реализующие этот метод механизмы и качество обслуживания (QoS) определялись для всех видов трафика, кроме речевого. Традиционные сети с пакетной коммутацией, использующие различные способы коммутации пакетов, обычно применяют низкоскоростные каналы связи и не имеют возможности доставки сообщений, чувствительных к задержке. Другими словами, для этих сетей характерна большая часто меняющаяся задержка доставки сообщений.
Известно, что такая задержка обуславливается, с одной стороны, скоростью коммутации в узле связи (УС), а с другой, пропускной способностью магистральной линии связи. Значительное снижение задержки может быть достигнуто за счет применения метода ретрансляции кадров и магистральных линий связи с высокой пропускной способностью. Таким образом, FR-сеть способна "транспортировать" чувствительный к задержкам трафик. Но одно дело - передача трафика данного типа по сети с динамической маршрутизацией, а другое - обеспечение приемлемого качества обслуживания пользователей.
Среди проблем, связанных с передачей речевого трафика, - необходимость обеспечения постоянной скорости такой передачи. Вся информация, которая содержится в оцифрованном по методу импульсно-кодовой модуляции (ИКМ) речевом сигнале, передаваемом со скоростью 64 кбит/с, важна для восстановления исходного речевого сообщения на приемной стороне. Однако разработаны методы, которые дают возможность снизить требования к полосе пропускания оцифрованного речевого сигнала:
компрессия (сжатие). Благодаря ей можно снизить скорость с 64 до 8 кбит/с и менее. Во многих известных мультиплексорах реализованы алгоритмы, позволяющие уменьшить скорость передачи. Нижний предел сжатия речевого сигнала еще не достигнут, исследования в данной области продолжаются. Конечно, при увеличении степени компрессии это начинает сказываться на качестве восстанавливаемого речевого сообщения. Однако человеческое ухо способно уловить и распознать речь, которая была подвергнута очень сильному сжатию;
детектирование шума (подавление речевых пауз). Исследования показывают, что типичная человеческая речь на 60-70% состоит из пауз. Их необходимо детектировать, чтобы исключить передачу шума через сеть и тем самым обеспечить высокую эффективность ее функционирования.