Эти 1300-нанометровые лазеры намного дороже тех, которые работают на более коротких длинах волн, но коллектив разработчиков HP считает, что достижения в области резонаторных поверхностных лазеров (vertical-cavity surface emitting laser) способны снять проблему высокой стоимости. Между тем эти исследования только начались, и для достижения результатов предстоит проделать долгий путь.
«Мы не стремимся конкурировать с телекоммуникационными компаниями в области дальней связи», — сказал Лемофф. Он пояснил, что HP пытается создать модуль, стоимость которого примерно эквивалентна стоимости существующих модулей Gigabit Ethernet. Этот модуль будет иметь приблизительно тот же размер и позволит применять те же самые разъемы для многомодового волоконно-оптического кабеля.
«Переход от Gigabit Ethernet к технологии на основе WDM потребует поэтапного решения нескольких важных технических проблем, — считает сотрудница лаборатории HP Labs Лайза Бакмэн. — Нам понадобятся оптические компоненты для объединения и разделения светового сигнала с разной длиной волны и лазерная технология, отличная от той, что мы сегодня имеем». Она отметила также, что ее коллектив работает над технологией физического уровня, использовать которую могли бы любые технологии более высокого уровня, например Ethernet или ATM.
Если одни производители и пользователи с пониманием и воодушевлением относятся к перспективе передачи кадров Ethernet со скоростями свыше 1 Гбит/с, то другие имеют на этот счет иное мнение. «Может быть, вместо того, чтобы тратить время и деньги на разработку технологии следующего поколения, лучше с максимальной выгодой использовать то, что мы имеем сегодня?» — спрашивают они. Дуг Руби из компании Lucent тоже задается этим вопросом. В январе 1998 г. Lucent завершила 200-миллионную сделку по приобретению фирмы Prominet, пионера в области разработки Gigabit Ethernet. Она стала частью группы по продуктам для корпоративной инфраструктуры в организации сетевых систем передачи данных компании Lucent.
«Мне кажется, пока слишком рано говорить, что следующим шагом будет Ethernet на 10 Гбит/с. Более того, я абсолютно уверен, что следующий шаг будет иным», — полагает Руби. Он говорит, что при появлении три года назад технология Fast Ethernet сразу стала пользоваться устойчивым высоким спросом, однако, если сравнивать с историей Fast Ethernet, Gigabit Ethernet появился слишком рано, поэтому его пропускной способности хватит еще надолго. Из-за этого Руби больше волнуют вопросы обеспечения на гигабитных скоростях качества услуг (Quality of Service, QoS).
«Сегодня стандарты определяют не просто передачу битов по кабелю, а построение всей коммутационной системы, такой, как ATM, а это уже не просто физический уровень OC-3, а целый комплекс спецификаций (таких, как управление потоком данных и маршрутизация), — говорит Руби. — Я считаю, что Ethernet будет развиваться в том же направлении».
Он добавил, что несмотря на то, что некоторые проблемы качества услуг можно разрешить в рамках таких стандартов, как IEEE 802.1p (для описания полей пакетов для задания различных уровней приоритетов) или RSVP (для запроса у маршрутизатора требуемых ресурсов), они все же не решают всех проблем. «Мне часто приходится разговаривать с администраторами сетей, но они затрудняются ответить, сколько они готовы потратить на управление пропускной способностью в локальной сети, — рассказывает Руби. — Они могут расходовать немало средств на каналы глобальных сетей, но к локальным сетям это не имеет отношения». По этой причине качество услуг не обеспечивается даже в тех территориальных сетях, где используется ATM —все данные там доставляются по мере возможности. Качество услуг предоставляется обычно на границе сети — между локальной и глобальной сетью.
Существующие протоколы обеспечения QoS критикуют за то, что они (в частности, протокол RSVP) недостаточно хорошо масштабируются для мультимегабитной Ethernet. Вместе с тем Руби считает, что масштабирование — не проблема. Проблема заключается в том, как заставить приложения сообщать сети требования к пропускной способности и задержке при передаче. «Приложения не понимают требований к пропускной способности и задержке и ничего не знают о реальных возможностях сети, — говорит Руби. —Большинство администраторов сетей, которых я знаю, с большой настороженностью относятся к тому, что приложения должны будут обращаться к сети с запросами по поводу необходимых ресурсов».
Такие протоколы, как RSVP, IEEE 802.1p и 802.1Q (еще один метод задания меток пакетов в соответствии с приоритетом), позволяют в определенных ситуациях максимально эффективно использовать имеющуюся пропускную способность, но Руби также является сторонником управления сетью в соответствии с правилами. Данная концепция, привлекающая к себе сегодня немало внимания, позволяет сделать сеть интеллектуальнее — она будет больше знать о типе передаваемого трафика и о том, куда направляются данные. Руби говорит, что за счет применения элементов управления, определения пользователей, групп приложений и сетевых объектов, контроля за использованием ими сетевых ресурсов имеющейся пропускной способности будет достаточно для большинства клиентов. «Я убежден, что для решения в кратчайшие сроки проблемы пропускной способности нам нужно вернуться назад к вопросам качества услуг, рассмотрев их с точки зрения администраторов сетей», — полагает Руби.
Итак, для перехода к мультимегабитным сетям Ethernet еще предстоит решить немало проблем. Хотя исследования и разработки различных аспектов данной технологии уже начались, до появления конечного продукта нужно пройти немалый путь. Теперь, когда IEEE ратифицировал стандарт 802.3z, мы можем ожидать, что вскоре кто-нибудь предложит создать еще одну рабочую группу для разработки Ethernet следующего поколения.
Когда отрасль будет иметь лучшее представление о потенциальных способах использования мультимегабитных сетей Ethernet и о препятствиях на пути к их созданию, приверженцы Ethernet (даже при появлении более быстрых и привлекательных технологий) получат еще одну новую возможность.
С переходом технологии Ethernet к скоростям 100 Мбит/с и 1 Гбит/с разработчики столкнулись с тем, что импульсы лазерного света проходят по многомодовому оптическому волокну по разным маршрутам. Часть из них следует по прямой вдоль центральной оси оптического волокна, другие же на своем пути отражаются от поверхности волокна. Чем большее расстояние проходит импульс, тем сильнее он размазывается, поскольку для одних импульсов маршрут оказывается короче, чем для других.
Это явление, получившее название дифференциальной задержки моды (Differential Mode Delay, DMD), затрудняет прием импульсов на другом конце кабеля (приемнику труднее их различить). На больших скоростях передачи данных проблема DMD, характерная для многомодового волоконно-оптического кабеля из-за его способности поддерживать несколько мод, становится еще более острой.
Такое явление, как DMD, существовало всегда, но до того, как гигабитные скорости стали возможными, оно не представляло проблем. «Из-за DMD импульс света «смазывается» на другом конце многомодового волокна, и принимающему трансиверу трудно различить импульс, — говорит Дейв Робертс, директор по маркетингу Accelar компании Bay Networks. — При гигабитных скоростях импульсы следуют с очень малыми интервалами, и любое «смазывание» приводит к наложению соседних импульсов». В технологии Fast Ethernet промежуток между импульсами в десять раз больше, чем в случае Gigabit Ethernet.
Явление DMD возникает не в каждом волокне и не для каждого лазера — проблема возникает только при определенной комбинации лазера и кабеля. Тем не менее оно заставило рабочую группу Gigabit Ethernet Task Force пересмотреть некоторые оптические спецификации стандарта 802.3z.
При увеличении скорости передачи данных в сети Ethernet DMD может потенциально вызвать немало проблем, поскольку оно характерно для многомодового кабеля, широко применяемого в современных кабельных системах. Избежать данной проблемы позволяет использование одномодового волоконно-оптического кабеля, в котором явление DMD не возникает (однако это очень дорогостоящее решение), или учет DMD при разработке мультигигабитных стандартов.
До настоящего времени системные администраторы были ограничены в выборе средств для построения центральных магистралей своих сетей. С появлением новых технологий возникла другая проблема – что выбрать? Это была серьезная борьба всех трех стандартов, но в конце концов победил FDDI.
Хотя сегодня FDDI занимает прочное положение на рынке, мы не принимали это во внимание. До недавнего времени это был действительно единственный выбор. Он обладает репутацией старой, проверенной технологии. FDDI победил потому, что он получил хорошие или отличные оценки во всех оцениваемых категориях.
Решающим фактором в нашем сравнении стала категория надежности, где FDDI получил высшую оценку. Архитектура двойного кольца позволяет функционировать системе даже при обрыве кабеля и быстро находить неисправность. Установка и настройка не вызывает ни каких проблем, да и при оценке скорости передачи данных он не казался очень медленным. Во время дневных тестов все три конкурента показывали примерно равные скорости. В ночных тестах FDDI немного уступал в скорости АТМ. Тем не менее ясно, что FDDI - заходящая звезда в галактике сетевых технологий и дни ее сочтены.
С другой стороны Fast Ethernet - это восходящая звезда. Эта технология занимает второе место и очень сильно приближается к FDDI. Fast Ethernet имеет два преимущества - низкая стоимость популярность ее предшественницы, технологии Ethernet.
Fast Ethernet доказала свою простоту в установке и хорошо держалась в скоростных испытаниях против АТМ. В категории стоимости она получила высшую оценку, правда на удивление близко с ней оказалась и FDDI.
Хотя некоторые поставщики и предлагают свои высоконадежные решения на базе Fast Ethernet, базовая технология не предусматривает никакого механизма повышения надежности. Этот недостаток, наряду с тем фактом что Fast Ethernet не обладает развитыми функциями управлением, привели к тому что он занял лишь второе место.