Табл. 7. Энтальпии образования фторидов лантаноидов.
Соединения | LaF3 | NeF3 | EuF3 | GdF3 | DyF3 | ErF3 | YbF3 | LuF3 |
ΔН° 298 КДж/моль | -1732 | -1713 | -1619 | -1713 | -1720 | -1723 | -1657 | -1701 |
От фторидов к иодидам теплоты образования убывают для лантаноидов.
Из тетрагалогенидов известны только MeF4. CeF4 получают растворением СеО2 в плавиковой кислоте:
CeO2 + 4HF → CeF4 + 2H2O
Тетрафторид церия (IV) – бесцветный порошок, разлагающийся при 390°С. ТbF4 можно получить окислением трифторида фтором:
2TbF3 + F2 → 2TbF4
Тетрафториды лантаноидов получают окислением соответствующих трифторидов тетрафторидом ксенона:
4MeF3 + XeF4 → 4MeF4 + Xe
Жёлтые кристаллы TbF4 разлагаются при 180°С. Известен и бесцветный PrF4 c температурой разложения 90°С.
Известны также и галогениды лантаноидов со степенью окисления +2. Восстановлением трифторида европия водородом при 1000°С можно получить дифторид, который изоморфен с CaF2:
2EuF3 + H2 → 2EuF2 + 2HF
Известны также дихлориды, дибромиды и дииодиды Sm, Eu, Tm, Yb. Их устойчивость в указанном ряду лантаноидов снижается от хлоридов к иодидам.
Интересны по химическим свойствам и карбиды лантаноидов. Наиболее характерны жёлтые карбиды состава МеС2. Некоторые лантаноиды могут также образовывать карбиды состава Ме3С. Все карбиды устойчивы к нагреванию, плавятся лишь при 2000°С. Интересно, что карбиды лантаноидов имеют такую же электрическую проводимость, как и чистые металлы. При гидролизе карбидов выделяются углеводороды, среди которых доминирует ацетилен. Получают карбиды обычным для бинарных соединений способом:
хМе + уС → МехСу
Для лантаноидов при высокотемпературном сплавлении получены моно – и дисилициды: MeSi и MeSi2. Известны также силициды с меньшим содержанием кремния.
Удалось получить также и бориды лантаноидов состава: МеВ2, МеВ6, МеВ4, МеВ12. Все бориды металлоподобны, тугоплавки (2000 – 2500°С), обладают высокой электропроводимостью и твёрдостью. Для иттрия и лютеция получены дибориды MeВ2. Для всех лантаноидов получены наиболее устойчивые гексабориды MeВ6. Кроме того, для многих лантаноидов известны бориды MeВ4 и MeВ12, а также более богатые бором соединения.
Известны также и фосфиды типа МеР. При сплавлении компонентов легко образуются изоморфные фосфидам арсениды, стибиды и висмутиды.
Состав селенидов и теллуридов чаще всего отвечает формулам МеSe(Te) или Ме2Se(Te)3. Только при сплавлении церия с теллуром получается СеТе2. В отличие от сульфидов селениды устойчивы к воде и разлагаются только кислотами. При нагревании селенидов типа Ме2Se3 до 1200-1700°С они выделяют селен и переходят в селениды Ме3Se4 с металлическим блеском:
3Ме2Se3 → 2Ме3Se4 + Se
Гидроксиды лантаноидов получают путём добавления к растворимым солям металлов сильной щёлочи:
МеCl3 + 3NaOH → Me(OH)3↓ + 3NaCl
Гидроксиды лантаноидов по силе уступают лишь гидроксидам щёлочноземельных металлов. Латаноидное сжатие приводит к уменьшению ионности связи Э – ОН и уменьшению основности в ряду Се(ОН)3 – Lu(OH)3. В ряду лантаноидов основная сила гидроксидов постепенно уменьшается. Гидроксиды иттербия и лютеция проявляют слабую амфотерность.
В кислых растворах гидроксид церия (IV) выступает как сильный окислитель:
2Ce(OH)4 + 8HCl → 2CeCl3 + Cl2↑ + 8H2O
2Cl- -2℮- → Cl2 2 1 Ce(OH)4 + 4H+ +℮- → Ce3+ + 4H2O 1 22Ce(OH)4 + 2Cl- + 8H+ → 2Ce3+ + Cl2 + 8H2O
Гидроксиды лантаноидов со степенью окисления +2 имеют ярко выраженный основный характер. По свойствам они близки к гидроксидам щелочноземельных металлов.
Считают, что 4f-орбитали лантаноидов, входящих в состав соединения, подвергаются, хотя и неполному экранированию электронами, занимающими 5s- и 5p-подуровни энергии. По сравнению с одиночными атомами порядок подуровней энергии у лантаноидов иной: 4f2-14 5s2 5p6 5d0-1 6s2. Эффект экранирования сильно уменьшает перекрывание 6f-орбиталей с атомными орбиталями и связи Ме─L имеют преимущественно ионный характер, связанный с ион – дипольным электростатическим взаимодействием. Комплексообразовательная способность лантаноидов невелика. Это связано с неблагоприятной для орбитальной гибридизации электронной структурой, так как достраивающиеся 4f – оболочки расположены очень глубоко. Наибольшую способность к комплексообразованию проявляет церий, поскольку катион Се4+ обладает большим значением ионного потенциала. При этом высшая степень окисления более стабильна. Для церия с такой степенью известны довольно устойчивые комплексы: [Ce(C2O4)3]2- и [Ce(NO3)6]2-. Из галогенидных комплексов наиболее устойчивы фторидные: [MeF6]2-(Ce и Pr), [MeF7]2-(Ce, Pr, Tb), а для диспрозия известен только Cs3[DyF7]. Координационное число в комплексах лантаноидов может изменяться в интервале 6 -12. В бромидных и хлоридных комплексах координационное число равно 6 ([PrCl6]3-, [NdBr6]3-, [DyBr6]3-); в сульфатных, тиоцианатных, оксалатных и хроматных комплексах – 8 ([Sm{CrO4}2]-, [Pr{CrO4}2]-); в иодидных и броматных – 9 ([NdI9]6-, [Gd{BrO3}9]6-, [PrI9]6-). Комплексы лантаноидов с координационным числом 10 с монодентантными лигандами неизвестны.
Синтезировано небольшое число комплексов с координационным числом 11, например, биядерный комплекс. Больше известны комплексы с координационным числом 12: Ме[Ce(NO3)6], Ме – Mg, Co, Mn. Высокие переменные координационные числа в комплексах лантаноидов вызваны ионным характером связи.
В водной среде молекулы воды и другие кислородсодержащие лиганды образуют связи с лантаноидами через атом кислорода. Ln – O.
Получение
Основной способ получения лантаноидов – восстановление металлов из их оксидов водородом или другими восстановителями.
А. Н. Даапе и Ф. Спендинг разработали двухстадийный способ получения элементарного диспрозия. Сначала окись диспрозия превращают во фторид, на который затем действуют металлическим кальцием при быстром нагревании:
Dy2O3 + 6HF → 2DyF3 + 3H2O
2DyF3 + 3Ca 1500°С → 3CaF2 + 2Dy
Такой способ позволяет получать металл высокой чистоты.
Тербий получают, восстанавливая Tb2O3 кальцием или электролизом расплава TbCl3:
Tb2O3 + 3Ca → 3CaO + 2Tb
2TbCl3 электролиз→ 2Tb + 3Cl2
К(-) Tb3+ +3℮--→ Tb 3 2
A(+) Cl2 -2℮--→ 2Cl-- 2 3
Благодаря внедрению передовых технологий получения лантаноидов, такие как ионный обмен, зонная плавка, экстракция, получают металлы с большим выходом и высокой чистоты.
Теоретически из бромида самария (II) возможно выделить чистый металл. Однако при взаимодействии с активными металлами основная масса исходного вещества сублимируется:
SmBr2 + Ba → Sm + BaBr2
Лантан получают из монацита в несколько стадий. Первая стадия концентрирования происходит уже на драге. Плотность монацита 4,9—5,3, а обычного песка — в среднем 2,7 г/см3. При такой разнице в весе гравитационное разделение не представляет особого труда. Но кроме монацита в тех же песках есть другие тяжелые минералы. Поэтому, чтобы получить монацитовый концентрат чистотой 92—96%, применяют комплекс гравитационных, магнитных и электростатических методов обогащения. В результате попутно получают ильменитовый, рутиловый, цирконовый и другие ценные концентраты.
Как и всякий минерал, монацит надо "вскрыть". Чаще всего монацитовый концентрат обрабатывают для этого концентрированной серной кислотой. Образующиеся сульфаты редкоземельных элементов и тория выщелачивают обычной водой. После того как они перейдут в раствор, в осадке остаются кремнезем и не отделившаяся на предыдущих стадиях часть циркона.
На следующей стадии разделения извлекают короткоживущий радий-228, а затем и торий — иногда вместе с церием, иногда отдельно. Отделение церия от лантана и смеси лантаноидов не особенно сложно: в отличие от них, он способен проявлять валентность 4+ и в виде гидроксида Се(ОН)4 переходить в осадок, тогда как его трехвалентные аналоги остаются в растворе. Отметим только, что операция отделения церия, как, впрочем, и предыдущие, проводится многократно — чтобы как можно полнее "выжать" дорогой редкоземельный концентрат.
После того как выделен церий, в растворе больше всего лантана (в виде нитрата La(NO3)3, так как на одной из промежуточных стадий серная кислота была заменена азотной, чтобы облегчить дальнейшее разделение). Из этого раствора и получают лантан, добавляя аммиак, нитраты аммония и кадмия. В присутствии Cd(NO3)2 разделение более полно. С помощью этих веществ все лантаноиды переходят в осадок, в фильтрате же остаются лишь кадмий и лантан. Кадмий осаждают сероводородом, отделяют осадок, а раствор нитрата лантана еще несколько раз очищают дробной кристаллизацией от примесей лантаноидов.
В конечном счете, получают хлорид лантана LаС13. Электролиз расплавленного хлорида дает лантан чистотой до 99,5%. Еще более чистый лантан (99,79% и выше) получают кальциетермическим способом. Такова традиционная классическая технология.
Как видим, получение элементарного лантана — дело сложное.
Разделение лантаноидов — от празеодима до лютеция — требует еще больших затрат сил и средств, и времени. Поэтому в последние десятилетия химики и технологи многих стран мира стремились создать новые, более совершенные методы разделения этих элементов. Такие методы — экстракционные и ионообменные — были созданы и внедрены в промышленность. Уже в начале 60-х годов на, установках, работающих по принципу ионного обмена, достигли 95%-ного выхода редкоземельных продуктов чистотой до 99,9%.
К 1965 году внешнеторговые организации нашей страны могли предложить покупателям все лантаноиды в виде металлов чистотой выше 99% кроме прометия. Хотя радиоактивные препараты этого элемента — продукты ядерного распада урана — тоже стали вполне доступны.