Смекни!
smekni.com

Кластерные системы (стр. 4 из 7)

- в качестве программного обеспечения применяют ОС Linux, и бесплатно распространяемые коммуникационные библиотеки (PVM и MPI);

Также

История проекта Beowulf

Проект начался летом 1994 года в научно-космическом центре NASA - Goddard Space Flight Center (GSFC), точнее в созданном на его основе CESDIS (Center of Excellence in Space Data and Information Sciences).

Первый Beowulf-кластер был создан на основе компьютеров Intel архитектуры под ОС Linux. Это была система, состоящая из 16 узлов (на процессорах 486DX4/100MHz, 16MB памяти и 3 сетевых адаптера на каждом узле, 3 "параллельных" Ethernet-кабеля по 10Mbit). Он создавался как вычислительный ресурс проекта "Earth and Space Sciences Project" (ESS).

Далее в GSFC и других подразделениях NASA были собраны другие, более мощные кластеры. Например, кластер theHIVE (Highly-parallel Integrated Virtual Environment) содержит 64 узла по 2 процессора Pentium Pro/200MHz и 4GB памяти в каждом, 5 коммутаторов Fast Ethernet. Общая стоимость этого кластера составляет примерно $210 тыс. В рамках проекта Beowulf был разработан ряд высокопроизводительных и специализированных сетевых драйверов (в частности, драйвер для использования нескольких Ethernet-каналов одновременно).

Архитектура Beowulf

Узлы кластера.

Это или однопроцессорные ПК, или SMP-сервера с небольшим числом процессоров (2-4, возможно до 6). По некоторым причинам оптимальным считается построение кластеров на базе двухпроцессорных систем, несмотря на то, что в этом случае настройка кластера будет несколько сложнее (главным образом потому, что доcтупны относительно недорогие материнские платы для 2 процессоров Pentium II/III). Стоит установить на каждый узел 64-128MB оперативной памяти (для двухпроцессорных систем 64-256MB).

Одну из машин следует выделить в качестве центральной (головной) куда следует установить достаточно большой жесткий диск, возможно более мощный процессор и больше памяти, чем на остальные (рабочие) узлы. Имеет смысл обеспечить (защищенную) связь этой машины с внешним миром.

При комплектации рабочих узлов вполне возможно отказаться от жестких дисков - эти узлы будут загружать ОС через сеть с центральной машины, что, кроме экономии средств, позволяет сконфигурировать ОС и все необходимое ПО только 1 раз (на центральной машине). Если эти узлы не будут одновременно использоваться в качестве пользовательских рабочих мест, нет необходимости устанавливать на них видеокарты и мониторы. Возможна установка узлов в стойки (rackmounting), что позволит уменьшить место, занимаемое узлами, но будет стоить несколько дороже.

Возможна организация кластеров на базе уже существующих сетей рабочих станций, т.е. рабочие станции пользователей могут использоваться в качестве узлов кластера ночью и в выходные дни. Системы такого типа иногда называют COW (Cluster of Workstations).

Количество узлов следует выбирать исходя из необходимых вычислительных ресурсов и доступных финансовых средств. Следует понимать, что при большом числе узлов придется также устанавливать более сложное и дорогое сетевое оборудование.

Сеть

Основные типы локальных сетей, задействованные в рамках проекта Beowulf, - это Gigabit Ethernet, Fast Ethernet и 100-VG AnyLAN. В простейшем случае используется один сегмент Ethernet (10Mbit/sec на витой паре). Однако дешевизна такой сети, вследствие коллизий оборачивается большими накладными расходами на межпроцессорные обмены; а хорошую производительность такого кластера следует ожидать только на задачах с очень простой параллельной структурой и при очень редких взаимодействиях между процессами (например, перебор вариантов).

Для получения хорошей производительности межпроцессорных обменов используют полнодуплексный Fast Ethernet на 100Mbit/sec. При этом для уменьшения числа коллизий или устанавливают несколько "параллельных" сегментов Ethernet, или соединяют узлы кластера через коммутатор (switch).

Более дорогостоящим, но также популярным вариантом являются использование коммутаторов типа Myrinet (1.28Gbit/sec, полный дуплекс).

Менее популярными, но также реально используемыми при построении кластеров сетевыми технологиями являются технологии сLAN, SCI и Gigabit Ethernet.

Иногда для связи между узлами кластера используют параллельно несколько физичеких каналов связи - так называемое «связывание каналов» (channel bonding), которое обычно применяется для технологии Fast Ethernet. При этом каждый узел подсоединяется к коммутатору Fast Ethernet более чем одним каналом. Чтобы достичь этого, узлы оснащаются либо несколькими сетевыми платами, либо многопортовыми платами Fast Ethernet. Применение связывания каналов в узлах под управлением ОС Linux позволяет организовать равномерное распределение нагрузки приема/передачи между соответствующими каналами.

Системное ПО

Операционная система. Обычно используется система Linux в версиях, специально оптимизированных под распределенные параллельные вычисления. Была проведена доработку ядра Linux 2.0. В процессе построения кластеров выяснилось, что стандартные драйверы сетевых устройств в Linux весьма неэффективны. Поэтому были разработаны новые драйверы, в первую очередь для сетей Fast Ethernet и Gigabit Ethernet, и обеспечена возможность логического объединения нескольких параллельных сетевых соединений между персональными компьютерами (аналогично аппаратному связыванию каналов) , что позволяет из дешевых локальных сетей, обладающих низкой пропускной способностью, соорудить сеть с высокой совокупной пропускной способностью.

Как и в любом кластере, на каждом узле кластера исполняется своя копия ядра ОС. Благодаря доработкам обеспечена уникальность идентификаторов процессов в рамках всего кластера, а не отдельных узлов.

Коммуникационные библиотеки. Наиболее распространенным интерфейсом параллельного программирования в модели передачи сообщений является MPI. Рекомендуемая бесплатная реализация MPI - пакет MPICH, разработанный в Аргоннской Национальной Лаборатории. Для кластеров на базе коммутатора Myrinet разработана система HPVM, куда также входит реализация MPI.

Для эффективной организации параллелизма внутри одной SMP-cистемы возможны два варианта:

  1. Для каждого процессора в SMP-машине порождается отдельный MPI-процесс. MPI-процессы внутри этой системы обмениваются сообщениями через разделяемую память (необходимо настроить MPICH соответствующим образом).
  2. На каждой машине запускается только один MPI-процесс. Внутри каждого MPI-процесса производится распараллеливание в модели "общей памяти", например с помощью директив OpenMP.

После установки реализации MPI имеет смысл протестировать реальную производительность сетевых пересылок.

Кроме MPI, есть и другие библиотеки и системы параллельного программирования, которые могут быть использованы на кластерах.

Пример реализации кластера Beowulf - Avalon

В 1998 году в Лос-аламосской национальной лаборатории астрофизик Michael Warren и другие ученые из группы теоретической астрофизики построили суперкомпьютер Avalon, который представляет из себя Beowulf -кластер на базе процессоров DEC Alpha/533MHz. Avalon первоначально состоял из 68 процессоров, затем был расширен до 140. В каждом узле установлено 256MB оперативной памяти, EIDE-жесткий диск на 3.2GB, сетевой адаптер от Kingston (общая стоимость узла - $1700). Узлы соединены с помощью 4-х 36-портовых коммутаторов Fast Ethernet и расположенного "в центре" 12-портового коммутатора Gigabit Ethernet от 3Com.

Общая стоимость Avalon - $313 тыс., а его производительность по LINPACK (47.7 GFLOPS) позволила ему занять 114 место в 12-й редакции списка Top500 (рядом с 152-процессорной системой IBM SP2). 70-процессорная конфигурация Avalon по многим тестам показала такую же производительность, как 64-процессорная система SGI Origin2000/195MHz стоимость которой превышает $1 млн.

В настоящее время Avalon активно используется в астрофизических, молекулярных и других научных вычислениях. На конференции SC'98 создатели Avalon представили доклад, озаглавленный "Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for $150k" и заслужили премию по показателю цена/производительность ("1998 Gordon Bell Price/Performance Prize").

Заключение

Ведущие производители микропроцессоров: Sun Microsystems, Dell и IBM придерживаются одинаковой точки зрения на будущее отрасли суперкомпьютеров: на смену отдельным, независимым суперкомпьютерам должны прийти группы высокопроизводительных серверов, объединяемых в кластер. Уже сегодня распределенные кластерные системы опережают современные классические суперкомпьютеры по производительности: самый мощный на сегодняшний день компьютер в мире — IBM ASCI White — обладает производительностью в 12 ТераФЛОП, производительность сети SETI@Home оценивается примерно в 15 ТераФЛОП. При этом, IBM ASCI White был продан за 110 миллионов долларов, а за всю историю существования SETI@Home было потрачено около 500 тысяч долларов.

Проанализировав итоги работ, выполненных в рамках проекта Beowulf, можно прийти к следующему выводу: найденные решения позволяют самостоятельно собрать высокопроизводительный кластер на базе стандартных для ПК компонентов и использовать обычное программное обеспечение. Среди самых крупных экземпляров нельзя не отметить 50-узловой кластер в CESDIS, включающий 40 узлов обработки данных (на базе одно- и двухпроцессорных плат Рentium Рro/200 МГц) и 10 масштабирующих узлов (двухпроцессорная плата Рentium Рro/166 МГц). Соотношение стоимость/пиковая производительность в таком кластере представляется очень удачным. Вопрос в том, насколько эффективно удается распараллелить приложения - иными словами, какова будет реальная, а не пиковая производительность. Над решением этой проблемы сейчас и работают участники проекта.

Литература

1. http://www.citforum.ru/hardware/svk/glava_12.shtml

2. http://www.beowulf.com

3. http://newton.gsfc.nasa.gov/thehive/

4. LoBoS, http://www.lobos.nih.gov

5. http://parallel.ru/news/kentucky_klat2.html

6. http://parallel.ru/news/anl_chibacity.html

7. http://parallel.ru/cluster/

8. http://www.ptc.spbu.ru

Resources

MIMD компьютеры

MIMD компьютер имеет N процессоров, независимо исполняющих N потоков команд и обрабатывающих N потоков данных. Каждый процессор функционирует под управлением собственного потока команд, то есть MIMD компьютер может параллельно выполнять совершенно разные программы.