Смекни!
smekni.com

Коммуникационные подсети (стр. 1 из 5)

Новосибирский государственный технический университет

Кафедра вычислительной техники


Расчётно-графическая работа

по дисциплине «Сети и ЭВМ»

на тему

«Коммуникационные подсети »

Группа: АМ-110

Студент: -

Преподаватель: Мищенко В.К.

Новосибирск, 2004

Содержание

1. Общие характеристики подсетей. 3

1.1 Коммуникационная подсеть. 3

2. Одноузловая коммуникационная подсеть. 6

3. Многоузловая коммуникационная подсеть. 9

3.1. Моноканал. 11

3.2 Поликанал. 15

4. Циклическое кольцо. 19

Литература. 22

1. ОБЩИЕ ХАРАКТЕРИСТИКИ ПОДСЕТЕЙ

Коммуникационная подсеть представляет собой совокупность физической среды, программных и аппаратных средств, обеспечи­вающих передачу информации между группой абонентских систем. Рассматриваемая подсеть является важным компонентом инфор­мационно-вычислительной сети. В соответствии с этим к ней предъ­являются требования, основные из которых сводятся к следующим:

- высокая надежность передачи блоков данных

- небольшая стоимость передачи

- высокая скорость передачи

- износоустойчивость и долговечность оборудования

- малые потери информации

- минимальный штат обслуживания

- передача данных, закодированных любым способом.

До сих пор коммуникационные подсети в основном использо­вались для передачи информации между такими абонентами, как ЭВМ и терминалы. Параллельно этому существуют телевизионная, телефонная, телеграфная и телетайпная сети. И каждая из них предназначена для определенного вида информации. В последние годы начался переход на передачу любой информации в дискрет­ной форме. Это открыло возможность создания интегрированных, коммуникационных подсетей, к которым подключаются различные типы абонентов.

1.1 Коммуникационная подсеть

Любая коммуникационная подсеть предназначена для обеспечения различных форм взаимодействия абонентских си­стем друг с другом. Точки подключения систем к рассматриваемой сети определяются интерфейсом коммуникационной подсети. Для всех абонентских систем этот интерфейс один и тот же. Однако в последнее время в коммуникационную подсеть стали включать дополнительные функции, связанные с преобразованием нестан­дартных интерфейсов в интерфейс коммуникационной подсети. Такие подсети именуются интеллектуальными.

Первоначально через коммуникационную подсеть передавалась информация, предоставляемая либо потребляемая ЭВМ и терми­налами. Теперь же все чаще через ту же подсеть направляют звукограммы, речь, графические и даже телевизионные изображе­ния. Естественно, что любая подсеть должна обеспечивать раз­личные формы передачи данных, включающие: диалоговые по­сылки, файлы, сообщения и большие массивы информации. Ком­муникационную подсеть определяют четыре основные характерис­тики: трафик, надежность передачи, время установления сквозного (через подсеть) соединения, скорость передачи блоков данных.

Абонентская система

В соответствии с определением коммуникационной подсети выделим пять ее типов: одноузловая, многоузловая, моноканальная, поликанальная, циклическое кольцо.


Рис. 1. Главные компоненты ИВС



Абонентская система

Рис. 2. Типы локальных коммуникационных подсетей

. Эта классификация определяется характером доставки блоков данных от абонентской системы-отправителя к абонентской системе-получателю. Что же касается топологии, то указанные типы подсетей могут иметь одинаковую форму. Так, из рис..2 видно, что кольцевую форму могут иметь многоузловая подсеть, моноканал и циклическое кольцо.

Каждая из пяти типов подсетей (рис.2) имеет свои преиму­щества и недостатки. Поэтому среди них нельзя выделить лучшую. Каждая хороша в своей области, определяемой требованиями, предъявляемыми к подсети.

В коммуникационной подсети следует различать два понятия скорости передачи. Первое из них физическая скорость пере­дачи данных по каналу. Она определяется числом бит, передаваемых в секунду по конкретному каналу. Вторая скорость именуется сквозной. Она характеризуется числом блоков данных в секунду, передаваемых между рассматриваемой парой точек интерфейса подсети (например, между точками а, б, рис.1). Эта скорость является главной, ибо она определяет скорость передачи блоков данных сквозь всю подсеть. А именно эта скорость в первую оче­редь определяет быстродействие коммуникационной подсети. Для удобства сравнения с физической скоростью сквозная скорость ча­сто пересчитывается в биты в секунду.

Так, в одной из локальных сетей [101] физическая скорость передачи данных по каналу равна 3 Мбит/с. Однако сквозная скорость (в пересчете на мегабиты в секунду) составляет лишь 0,6 Мбит/с.

На сквозную скорость влияют многие факторы (табл. 3.1). Анализ их показывает, как велики возможности повышения сквоз­ной скорости.

Следует отметить, что сквозная скорость определяет второй временной фактор быстродействия коммуникационной подсети время сквозного прохода блока данных через (сквозь) эту подсеть. Действительно, легко, себе представить подсеть, в точках интерфейса которой данные проходят быстро, например со скоро­стью 1 Мбит/с. Однако если подсеть создана не оптимально, то блок данных может проходить сквозь нее в течение недопустимо долгого времени, например 0,5 с.

Важной характеристикой коммуникационной подсети является используемая в ней физическая среда:

-эфир,

-световод,

-коаксиальный кабель

-скрученная пара проводов

-плоский кабель и т. д.

На этой основе создается канал совокупность физической среды и каналообразующих аппаратных средств, соединяющая две системы. Примеры каналов, используемых в коммуникационных подсетях, рассматриваются ниже.

Инфракрасный канал является в сетях новым типом канала, использующим эфир. Он удобен для получения высоких скоростей передачи на небольшие расстояния. Примером такого канала яв­ляется разработка, выполненная фирмой Datapoint. Созданный ею для передачи данных аппарат имеет мощность всего 1 мкВт, но обеспечивает при помощи некогерентного инфракрасного излуче­ния передачу дискретных данных при прямой видимости на рас­стояние до 3 км со скоростью 2,5 Мбит/с.

Таблица №1 Факторы влияющие на сквозную скорость.

Фактор

Его характеристика

Количество абонентских си­стем Структура станций

Длина канала определяет время распространения по нему сигнала; повторители, расщепители и другие компоненты канала вносят дополнитель­ные задержки

Топология

Чем больше систем, тем значительнее потери вре­мени на согласование их работы в сети Эффективность структуры, число и расположение буферов памяти, степень аппаратной реализа­ции функций, быстродействие микропроцессо­ров влияют на скорость работы станции
Величина трафика Число и частота передач увеличивают потери вре­мени на управление передачей
Число ошибок передачи Потери времени на проверку, переспрос и повтор­ную передачу блоков данных
Эффективность заполнения блоков данных Чем больше в блоке данных упаковано инфор­мационных бит, тем меньше число необходимых блоков
Объем операций управления Минимизация обработки прерываний, сообщений о передаче, упаковки/разупаковки позволяет уменьшить потери времени
Интерфейс абонента Качество и скорость передачи данных между станцией и абонентом также определяют воз­можные потери скорости

Микроволновый канал позволяет передавать информацию на расстояния до 15—20 км (при обеспечении прямой видимости). Здесь скорости достигают 20 Гбит/с.

Быстродействующим, надежным и эффективным при больших потоках данных является световодный канал, в котором в каче­стве физической среды используется сверхпрозрачное стеклово­локно. Простейший световод состоит из кварцевой сердцевины диа­метром 50—70 мкм, окруженной тонкой пленкой из стекла со зна­чительно меньшим коэффициентом преломления, чем сердцевина. Это позволяет отражать световые волны внутрь стеклянного во­локна, не выпуская их наружу. Нередко кварцевая сердцевина световода покрывается пластмассой. Такие световоды дешевле, на менее надежны в работе. В отличие от них стеклянные волокна не подвержены влиянию влаги и температуры, не стареют.

Пропускная способность световодного канала очень высока. Ее теоретический предел определяется десятками триллионов бит в секунду, а практически достигнутая скорость уже равна 2,41 Гбит/с [123]. Излучение света в этом канале осуществляется микролазером либо светоизлучающим диодом. Прием света обес­печивается полупроводниковым фотодиодом.