Смекни!
smekni.com

Контроль динамических параметров ЦАП (стр. 3 из 3)

Поскольку моменты запуска и нормализации триггера Т2 определяются соответственно фронтом импульсов генератора Г, совпадающим с началом переходного процесса, и стробирующим импульсом, периодическое появление которого совпадает с моментом достижения переходным процессом установившегося значения, то длительность повторяющихся с частотой генератора выходных импульсов триггера Т2 в конце измерительного цикла равна дли­тельности переходного процесса исследуемого сигнала (рисунок 6е). Длительность выходных импульсов триггера Т2 с помощью преобразователя средних значений ПСЗ преобразуется в пропорциональное напряжение постоянного тока, фиксируемое, по окончании измерительного процесса отсчетно-регистрирующим устройством ОРУ. Поскольку частота генератора фиксирована, При постоянстве амплитуды Umax импульсов триггера Т2 в качестве ПСЗ можно использовать преобразователь сред­него значения импульсного сигнала в пропорциональное напряжение постоянного тока Ucp. В этом случае его вы­ходное напряжение Uвых однозначно определяет длитель­ность преобразуемых импульсов, а следовательно, дли­тельность переходного процесса tycт, т. е.:

(2)

Время измерения tизм определяется выбранным чис­лом п измерений в каждой точке переходного процесса и дискретным значением δt:

(3)

Как следует из рассмотренной схемы, результирую­щая погрешность измерения времени установления tуст определяется в основном разрешающей способностью ΔUк стробируемых компараторов и ограниченностью полосы пропускания измерителя, приводящей к искажению переходного процесса. Относительная погрешность γ обусловленная величиной ΔUк, зависит в свою очередь от крутизны S исследуемого сигнала U(t) в точке пере­сечения с границей зоны допустимых значений:

(4)

Это соотношение показывает, что погрешность γ, обу­словленная разрешающей способностью компараторов, в значительной мере зависит от характера переходного процесса и возрастает с уменьшением производной иссле­дуемого сигнала в момент окончания переходного про­цесса.

Влияние полосы пропускания схемы измерения проявляется в ослаблении высокочастотных составляющих выходного сигнала ЦАП, что приводит к изменению дли­тельности временного интервала, соответствующего длительности переходного процесса, а следовательно, к появлению ошибки преобразования. При нахождении полосы пропускания измерителя необходимо учитывать максимально возможный спектр частот F анализируемого сигнала:

F = (1 ÷ 2)/т (5)

где т — длительность видеоимпульса.

Для неискаженной передачи этих сигналов полоса частот измерителя должна в 3—5 раз превышать зна­чение F.

Рассмотренные погрешности определяют в основном результирующую погрешность измерения, поскольку по­грешность измерения временного интервала, соответствующего времени установления, может быть простыми схемотехническими средствами сведена к пре­небрежимо малой величине.


Список литературы

1. Измерения и контроль в микроэлектронике: Учебное пособие по специальностям электронной техники / Дубовой Н.Д., Осокин В.И., Очков А.С. и др.; Под ред. А.А.Сазонова. - М.: Высшая школа, 1984. - 367с.

2 Глудкин О.П., Черняева В.Н. Технология испытания микроэлементов радиоэлектронной аппаратуры и интегральных микросхем. – М.: Энергия, 1980.

3 Микроэлектроника: Учеб. пособие для втузов. В 9 кн. / Под ред. Л.А.Коледова. Кн. 5. И.Я.Козырь. Качество и надёжность интегральных микросхем. – М.: Высшая школа, 1987. – 144 с.

4 Измерение параметров цифровых интегральных микросхем / Д.Ю.Эйдукас, Б.В.Орлов, Л.М.Попель и др.; Под ред. Д.Ю.Эйдукаса, Б.В.Орлова. – М.: Радио и связь, 1982.

5 Докучаев Н.И., Козырь И.Я. Онопко Д.И. Испытания и измерения интегральных микросхем. – М.: Изд. МИЭТ, 1978.

6 Докучаев Н.И., Коледов Л.А. Элементы надёжности и измерение параметров интегральных микросхем. – М.: Изд. МИЭТ, 1979.