Рефлексивность: X -> X.
Пополнение: X -> Y влечет за собой XZ -> y.
Аддитивность: X -> Y и X -> Z влечет за собой X -> YZ.
Проективность: X -> YZ влечет за собой X -> Z.
Транзитивность: X -> Y и Y -> Z влечет за собой X -> Z.
Псевдотранзитивность: X -> Y и YZ -> W влечет за собой XZ -> W.
Пример.
Пусть дано отношение R , а X , Y и Z подмножества R . Предположим, что отношению удовлетворяет XY -> Z и X -> Y . Согласно аксиоме псевдотранзитивности получим XX -> Z или X -> Z.
Если даны аксиомы рефлексивности, пополнения и псевдотранзитивности, то из них можно вывести все остальные. Иногда их называют аксиомами Армстронга.
Пусть F-множество F-зависимостей для отношения R . Замыкание F , обозначаемое F+ , - это наименьшее содержащее F множество, такое что при применении к нему аксиом Армстронга нельзя получить ни одной F - зависимости, не принадлежащей F.
Пример.
Пусть F = {AB -> C, C -> B } - множество F-зависимостей на R(ABC). F+ = {A -> A, AB -> A, AC -> A, ABC -> A, B -> B, AB -> B, BC -> B, ABC -> B, C -> C, AC -> C, BC -> C, ABC -> C, AB -> AB, ABC -> AB, AC -> AC, ABC -> AC, BC -> BC, ABC -> BC, ABC -> ABC, AB -> C, AB -> AC, AB -> BC, AB -> ABC, C -> B, C -> BC, AC -> B, AC -> AB}
Таким образом, если известно множество F-зависимостей удовлетворяющих отношению R, можно найти все F- зависимости, удовлетворяющие этому отношению. Говорят, что F = X -> Y ,если X -> Y F+ .Лекция 3
Получение замыкания F+ не обязательно для установления F = X -> Y.Для этого достаточно воспользоваться алгоритмом MEMBER .
Алгоритм MEMBER.
Вход: Множество F-зависимостей F и F-зависимость X -> Y.
Выход: истина, если F = F = X -> Y, ложь в противном случае.begin
if Y CLOSURE(X,F) then return (истина)
else return(ложь)
end
Здесь CLOSURE алгоритм, позволяющий выявить список атрибутов входящих в множество F, который имеет вид.
Алгоритм CLOSURE.
Вход: Множество атрибутов Х и множество F-зависимостей F.
Выход: Замыкание Х над F.
begin
while NEWDEP OLDDEP do begin
for каждая F- зависимость W -> Z в F do
if NEWDEP W then
NEWDEP = NEWDEP Z
end
return(NEWDEP)
end
Пусть F = {НОМЕР_РЕЙСА ДАТА_ВЫЛЕТА -> КОЛИЧЕСТВО_МЕСТ,
НОМЕР_РЕЙСА -> ПУНКТ_ОТПРАВЛЕНИЯ, НОМЕР_РЕЙСА ДАТА_ВЫЛЕТА -> ПИЛОТ} и необходимо установить F |= НОМЕР_РЕЙСА -> ПИЛОТ
Используем для этого алгоритм MEMBER
Покрытия функциональных зависимостей
Для формирования БД, как системы взаимосвязанных отношений на основании известных (из семантических соображений) F-зависимостей необходимо иметь способ минимизации первоначального множества F-зависимостей. Это необходимо для минимизации дублирования данных, обеспечения их согласованности и целостности. Теоретической основой для построения такого способа является теория покрытий функциональных зависимостей.
Определение.
Два множества F-зависимостей F и G над отношением R эквивалентны, , если F+ = G+ . Если , то F есть покрытие для G. Предполагается, что имеет смысл рассматривать в качестве покрытий такие множества F, которые не превосходят множество G по числу F-зависимостей.
Из этого определения следует, что для установления факта, что множество функциональных зависимостей F является покрытием G , необходимо определить эквивалентность F и G. Практически это достигается путем использования следующего алгоритма:
Алгоритм EQUIV
Вход: два множества F- зависимостей F и G.
Выход: истина, если ; ложь в противном случае.
begin
v=DERIVES(F,G) and DERIVES(G,F);
return(v)
end
Здесь DERIVES алгоритм проверяет условие F |= G и имеет вид:
Алгоритм DERIVES
Вход: два множества F- зависимостей F и G.
Выход: истина, если F |= G; ложь в противном случае.
begin
v= истина
for каждая F-зависимость X -> Y из G do
v = v and MEMBER(F, X -> Y)
end
return(v)
end
Множество F-зависимостей F не избыточно, если у него нет такого собственного подмножества F’ , что F’F . Если такое множество F’ существует, то F избыточно. F является не избыточным покрытием G, если F есть покрытие G и F не избыточно.
Пример. Пусть G = { AB -> C, A -> B, B -> C, A -> C}. Множество F= {AB -> C, A -> B, B -> C} эквивалентно G, но избыточно, потому что F’ = {A -> B, B -> C} также является покрытием G. Множество F’ представляет собой не избыточное покрытие G.
Действительно, согласно алгоритму EQUIV , так как DERIVES(F,G) дает истину и DERIVES(G,F) так же истина. То же самое можно сказать относительно F’ и G.
Множество F не избыточно, если в нем не существует F-зависимости X -> Y, такой, что F - { X -> Y} |= X -> Y . Назовем F-зависимость из F избыточной в F , если F - { X -> Y} |= X -> Y.
Для любого множества F-зависимостей G существует некоторое подмножество F, такое, что F является не избыточным покрытием G. Если G не избыточно, то F=G. Для определения не избыточного покрытия множества F- зависимостей G существует алгоритм NONREDUN, который имеет вид:
Вход: множество F-зависимостей G.
Выход: не избыточное покрытие G.
begin
F=G
for каждая зависимость X -> Y из G do
if MEMBER(F-{X->Y],X->Y) then F=F-{X->Y}
end
return(F)
end
Пример: Пусть G= {A -> B, B -> A, B -> C, A -> C}.
Результатом работы алгоритма является множество:
{A -> B, B -> A, A -> C}.
Если бы G было представлено в порядке {A -> B, A -> C, B -> A , B -> C} , то результатом работы алгоритма было бы
{A -> B, B -> A, B -> C}.
Из примера видно, что множество F-зависимостей G может иметь более одного неизбыточного покрытия. Могут так же существовать неизбыточные покрытия G, не содержащиеся в G. В приведенном примере таким неизбыточным покрытием будет множество
F = {A -> B, B -> A, AB -> C}.
Если F-неизбыточное множество F-зависимостей, то в нем нет “лишних” зависимостей в том смысле, что нельзя уменьшить F , удалив некоторые из них. Удаление любой F-зависимости из F приведет к множеству, не эквивалентному F. Однако размер можно уменьшить, удалив некоторые атрибуты F-зависимостей F.
Определение. Пусть F-множество F-зависимостей над R и X -> Y есть F-зависимость из F. Атрибут А из R называется посторонним в X -> Y относительно F, если
и (F - {X -> Y}) {Z -> Y}F или
Y = AW, YW и (F - {X -> Y}) {X -> W}F.
Иными словами, А - посторонний атрибут, если он может быть удален из правой или левой части X -> Y без изменения замыкания F.
Пример. Пусть G = {A -> BC,B -> C,AB -> D}. Атрибут С является посторонним в правой части A -> BC, а атрибут B - в левой части AB -> D.
Определение. Пусть F - множество F-зависимостей над R и X -> Y принадлежит F. F-зависимость X -> Y называется редуцированной слева, если Х не содержит постороннего атрибута А и редуцированной справа, если Y не содержит атрибута А , постороннего для X -> y. Зависимость X -> Y называется редуцированной, если она редуцирована слева и справа и Y . Редуцированная слева F-зависимость называется также полной F-зависимостью.
Определение. Множество F-зависимостей F называется редуцированным (слева, справа), если каждая F-зависимость из F редуцирована (соответственно слева, справа).
Пример. Множество G = {A -> BC, B -> C, AB -> D} не является редуцированным ни справа, ни слева. Множество G1 = {A -> BC, B -> C, A -> D} редуцировано слева, но не справа, а G2 = {A -> B, B -> C, AB -> D} редуцировано справа, но не слева. Множество G3 = {A -> B, B -> C, A -> D} редуцировано слева и справа, следовательно, поскольку правые части не пусты, редуцировано.
Для нахождения редуцированных покрытий используется алгоритм:
Вход: множество F-зависимостей G.
Выход: редуцированное покрытие G.
begin
F = RIGHTRED(LEFTRED(G))
удалить из F все F-зависимости вида X ->
return(F)
end
здесь RIGHTRED и LEFTRED алгоритмы редуцирования соответственно справа и слева, которые имеют вид:
Вход: множество F-зависимостей G.
Выход: редуцированное справа покрытие G.
begin
F = G
for каждая зависимость X -> Y из G do
for каждый атрибут А из Y do
if MEMBER(F - {X -> Y} {X ->(Y - A)}, X -> A) then
удалить А из Y в X -> Y из F
end
end
return(F)
end
Алгоритм LEFTRED
Вход: множество F-зависимостей G.
Выход: редуцированное слева покрытие G.
Begin
F = G
for каждая зависимость X -> Y из G do
for каждый атрибут А из Х do
if MEMBER(F,{X - A) -> Y) then
удалить А из X в X -> Y из F
end
end
return(F)
end
Пример. Пусть G’= {A -> C, AB -> DE, AB ->CDI, AC -> J}.Из LEFTRED(G’) получаем G” = {A -> C, AB -> DE, AB -> CDI, A -> J} и из RIGHTRED(G”) получаем F= {A -> C, AB -> E, AB -> DI, A -> J}, уже редуцированное.
Далее потребуется находить разбиение множества F- зависимостей, заданных на отношении R на подмножества, которые представляют собой классы F- зависимостей с эквивалентной левой частью.
Определение: два множества атрибутов X и Y называются эквивалентными на множестве F- зависимостей F, если F |= X->Y и F |= Y ->X.
Например пусть дано F={A -> BC, B -> A, AD -> E}, найдем все F- зависимости эквивалентные левой части первой, т.е. А. Левая часть второй F- зависимости (В) эквивалентна А ? Проверим F |= A -> B и F |= B -> A . Это действительно так. Следовательно А эквивалентно В и первые две F- зависимости можно объединить в один класс эквивалентности, который обозначается в общем случае ЕА(Х). Множество классов эквивалентности для заданного множества F- зависимостей обозначается F . Сокращенным способом записи F- зависимостей с эквивалентными левыми частями является составная функциональная зависимость (CF-зависимость), которая имеет вид: