Чистая стратегия – это стратегия, имеющая одно единственное значение или решение из множества заданных.
Смешанная (сложная) стратегия – это стратегия, которая берёт m значений с соответствующими вероятностями.
Стороны участвующие в конфликтной ситуации называются игроками, а предполагаемые действия каждого из игроков, направленные на достижение некоторой цели, называется правилами игры.
Платёж – это количественная оценка результатов игры.
Ходом в теории игр называется выбор одного из предложенных правилами игры действий его осуществлении.
Состязательная задача – это задача, разрешающая конфликтные ситуации между двумя или более противниками с целью нахождения оптимальной стратегии для каждого игрока, и в конечном итоге игрока, разрешающего конфликтную ситуацию.
Игру двух игроков можно описать как производственный процесс с помощью следующей функциональной схемы (рис.1).
Рисунок 2.1.1Оба игрока по прямой связи U(t) делает ход, выбирая предполагаемую стратегию. Ни один из игроков не знает хода противника. В случае если игрок узнает стратегию своего противника, то по обратной связи f(t) поступает сигнал, что он может отказаться от своей старой стратегии и выбрать другую стратегию. Востановив работу по прямой связи U(t).
Человек А в играх с природой старается действовать осмотрительно, используя, например, минимаксную стратегию, позволяющую получить наименьший проигрыш. Второй игрок В (природа) действует совершенно случайно, возможные стратегии определяются как её состояние. Условия игры задаются в виде матрицы.
Элементы Сij = выигрышу игрока А, если он использует стратегию Аi.
В данном курсовом проекте состязательная задача решается по методу Гурвица.
Пусть в игре принимают участие два игрока А и В.
Рассматривается конфликтная ситуация между двумя сторонами А и В. Игрок А имеет m стратегий, а В имеет n стратегий: А={А1, А1,…, А1}; В={В1, В1,…, В1}.
Взаимосвязь между стратегиями любого из игроков определяется платёжной матрицей С={Cij}m*n. Cij – выигрыш игрока А. Заданы статистические коэффициенты оптимизации (
).Цель игры состоит в том, чтобы вывести ситуацию из условия неопределённости, найти максимальный выигрыш, по которому определить оптимальную стратегию каждого игрока, а также игрока разрешающего конфликтную ситуацию.
Решение игры и исходные данные сводятся в таблицу Гурвица (табл. 2.1.1).
Таблица 2.1.1
В1 | В2 | … | Вn | Наименьший выигрыш | Наибольший выигрыш | Коэффициенты оптимизма | |||
1 | … | k | |||||||
А1 | C11 | C12 | … | C1n | a1 | А`1 | V11 | … | V1k |
А2 | C21 | C22 | … | C2n | a 2 | А`2 | V21 | … | V2k |
… | … | … | … | … | … | … | … | … | … |
Аm | Cm1 | Cm2 | … | Cmn | a m | А`m | Vm1 | … | Vmk |
Где
j – статистические коэффициенты оптимизации;к – количество оптимизмов;
Аj – стратегии игрока А;
Вj - стратегии игрока В;
Vij – расчетные условные выигрыши;
С учётом коэффициентом оптимизма вычисляем условные выигрыши
Выбираем решение о выборе стратегии, при
, где 0 (для игрок переходит к стратегии «азартного игрока»; для - стратегия абсолютного оптимизма)..
Основная теорема теории игр, состоит в следующем: любая конечная игра имеет, по крайне мере, одно решение, возможно в области смешанных стратегий. Применение оптимальной стратегии позволяет получить выигрыш равный цене игры:
, – цена игры.Применение игроком А оптимальной стратегии должно обеспечивать ему выигрыш при любых действиях игрока В, не меньше цены
. Выполняется соотношение: , - вероятность использования стратегии игрока А.Аналогично, для игрока В оптимальная стратегия должна обеспечить при любых стратегиях игрока А проигрыш, не более
: , - вероятность использования стратегии игрока В.Задача имеет решение игры, если её матрицы не содержит седловой точки (
).Расчет выигрышей производится по целевой функции:
Система ограничения:
Блок 1 - Начало программы