Смекни!
smekni.com

Метод Гурвица (стр. 2 из 4)

Чистая стратегия – это стратегия, имеющая одно единственное значение или решение из множества заданных.

Смешанная (сложная) стратегия – это стратегия, которая берёт m значений с соответствующими вероятностями.

Стороны участвующие в конфликтной ситуации называются игроками, а предполагаемые действия каждого из игроков, направленные на достижение некоторой цели, называется правилами игры.

Платёж – это количественная оценка результатов игры.

Ходом в теории игр называется выбор одного из предложенных правилами игры действий его осуществлении.

Состязательная задача – это задача, разрешающая конфликтные ситуации между двумя или более противниками с целью нахождения оптимальной стратегии для каждого игрока, и в конечном итоге игрока, разрешающего конфликтную ситуацию.

Игру двух игроков можно описать как производственный процесс с помощью следующей функциональной схемы (рис.1).

Рисунок 2.1.1

Оба игрока по прямой связи U(t) делает ход, выбирая предполагаемую стратегию. Ни один из игроков не знает хода противника. В случае если игрок узнает стратегию своего противника, то по обратной связи f(t) поступает сигнал, что он может отказаться от своей старой стратегии и выбрать другую стратегию. Востановив работу по прямой связи U(t).

Человек А в играх с природой старается действовать осмотрительно, используя, например, минимаксную стратегию, позволяющую получить наименьший проигрыш. Второй игрок В (природа) действует совершенно случайно, возможные стратегии определяются как её состояние. Условия игры задаются в виде матрицы.

Элементы Сij = выигрышу игрока А, если он использует стратегию Аi.

В данном курсовом проекте состязательная задача решается по методу Гурвица.

Пусть в игре принимают участие два игрока А и В.

Рассматривается конфликтная ситуация между двумя сторонами А и В. Игрок А имеет m стратегий, а В имеет n стратегий: А={А1, А1,…, А1}; В={В1, В1,…, В1}.

Взаимосвязь между стратегиями любого из игроков определяется платёжной матрицей С={Cij}m*n. Cij – выигрыш игрока А. Заданы статистические коэффициенты оптимизации (

).

Цель игры состоит в том, чтобы вывести ситуацию из условия неопределённости, найти максимальный выигрыш, по которому определить оптимальную стратегию каждого игрока, а также игрока разрешающего конфликтную ситуацию.

Решение игры и исходные данные сводятся в таблицу Гурвица (табл. 2.1.1).


Таблица 2.1.1

В1

В2

Вn

Наименьший

выигрыш

Наибольший

выигрыш

Коэффициенты оптимизма

1

k
А1

C11

C12

C1n

a1

А`1

V11

V1k

А2

C21

C22

C2n

a 2

А`2

V21

V2k

Аm

Cm1

Cm2

Cmn

a m

А`m

Vm1

Vmk

Где

j – статистические коэффициенты оптимизации;

к – количество оптимизмов;

Аj – стратегии игрока А;

Вj - стратегии игрока В;

Vij – расчетные условные выигрыши;

С учётом коэффициентом оптимизма вычисляем условные выигрыши

Выбираем решение о выборе стратегии, при

, где 0
(для
игрок переходит к стратегии «азартного игрока»; для
- стратегия абсолютного оптимизма).

.

2.2.Экономико – математическая модель

Основная теорема теории игр, состоит в следующем: любая конечная игра имеет, по крайне мере, одно решение, возможно в области смешанных стратегий. Применение оптимальной стратегии позволяет получить выигрыш равный цене игры:

,
– цена игры.

Применение игроком А оптимальной стратегии должно обеспечивать ему выигрыш при любых действиях игрока В, не меньше цены

. Выполняется соотношение:

,
- вероятность использования
стратегии игрока А.

Аналогично, для игрока В оптимальная стратегия должна обеспечить при любых стратегиях игрока А проигрыш, не более

:

,
- вероятность использования
стратегии игрока В.

Задача имеет решение игры, если её матрицы не содержит седловой точки (

).

Расчет выигрышей производится по целевой функции:

Система ограничения:

2.3.Описания метода Гурвица

2.3.1. Выбираем по строкам наименьший выигрыш и заполняем колонку а.

2.3.2. Выбираем по строкам наибольший выигрыши и заполняем колонку

2.3.3. Производим расчёт выигрыша по формуле:
; результаты заносим в таблицу и получаем матрицу
.

2.3.4. По методу максимина определяется наибольший из всех расчётных выигрышей; по наибольшему значению
определяется стратегия данного игрока.

2.3.5. Для разрешения конфликтной ситуации составляется таблица Гурвица относительно игрока В. В таблице меняем платёжную матрицу.

2.3.6. Далее также применяем принцип Гурвица и метод максимина относительно игрока В.

2.3.7. Игрок, разрешающий конфликтную ситуацию определяется по наибольшему расчётному выигрышу из соответствующих оптимальных стратегий игроков.


2.4.Алгоритм задачи

2.4.1. Алгоритм основной программы

2.4.2. Алгоритм процедуры W_rezultat







2.5. Описание алгоритма

2.5.1. Описание алгоритма основной программы

Блок 1 - Начало программы