Отладочные комплексы также предназначены для отладки МПС на программном уровне описания. Они отличаются от оценочных развитым программным обеспечением, увеличенной емкостью памяти и усложненным интерфейсом, позволяющим использовать более широкий диапазон устройств ввода-вывода. Здесь также основой является микроЭВМ, которая будет применяться в проектируемой системе, и системная магистраль, выводимая на внешний разъем. Использование этих комплексов при проектировании МПС дает следующие преимущества: возможность программирования на языке ассемблера или языках высокого уровня, широкий набор внешних устройств, развитую операционную систему. Недостатки: предназначаются для одного типа МП, накладывают ограничения на проектируемую систему по архитектуре, занимают системные ресурсы, не позволяют собирать информацию о поведении системы и управлять ее поведением в режиме реального времени.
Системное ПО отладочных комплексов включает в себя системный монитор и систему программирования: ассемблер или макроассемблер, редактор текста, редактор связей, загрузчик и отладчик.
Комплексы развития предназначены для отладки МПС на программном уровне описания и позволяют на программном уровне управлять поведением системы, собирать информацию о поведении системы, моделировать (эмулировать) недостающие устройства (МП, ЗУ, контроллеры и т.д.) в режиме реального времени или близкого к этому. Они характеризуются типом и числом эмулируемых МП, числом одновременно работающих пользователей, емкостью ОЗУ пользователя, емкостью внешних ЗУ, составом системного ПО, отладочными возможностями. Комплекс состоит из микроЭВМ с периферией и внутрисхемного эмулятора (ВСЭ). ВСЭ выполняет следующие функции: эмулирует поведение и электрофизические характеристики МП проектируемой системы и ЗУ (ОЗУ, ПЗУ, ППЗУ, контроллеры), собирает информацию о поведении системы на программном уровне и управляет ее поведением. Он может прервать работу системы при появлении заданного события, запускать систему с заданной команды, выполнять программу в пошаговом или автоматическом режимах, изменять состояние памяти, внутренних регистров МП и портов ввода-вывода. В части сбора информации ВСЭ обладает возможностями логических анализаторов с синхронной записью данных и, кроме этого, позволяет собирать статистические данные о времени выполнения участков программы. Кроме стандартных внешних устройств комплексы содержат программируемые устройства-программаторы для “прошивки” отлаженных программ в ППЗУ.
Комплексы развития делятся на однопроцессорные и многопроцессорные одномагистральные и многопроцессорные многомагистральные.
Недостатком однопроцессорных одномагистральных комплексов является то, что МП должен выполнять как функции эмулятора, так и системные функции комплекса (трансляцию программ, редактирование и т.п.). Недостатком многопроцессорного одномагистрального комплекса является то, что в данный момент времени может работать только один МП. Многопроцессорные многомагистральные комплексы (рис. 7.4) лишены этих недостатков: каждый ВСЭ имеет эмулятор микропроцессора (ЭМП), собственную память (ЭП) и магистраль, что позволяет ему вести эмуляцию одновременно и независимо от МП других эмуляторов.
Программное обеспечение комплекса развития обычно состоит из операционной системы, системы управления файлами, редакторов текста, кросс-ассемблеров и кросс-компиляторов, обеспечивающих разработку программ на языке ассемблера или языке высокого уровня для конкретного МП, драйвера, редактора связей, загрузчика, системного монитора.
Рис. 7.4. Структура многопроцессорного многомагистрального комплекса развития
1. В чем заключается автономная и комплексная отладка МПС?
2. Перечислить приборы, применяемые при отладке МПС и назвать функции каждого при отладке.
3. Назначение, состав и режимы работы логических анализаторов.
4. Назначение, состав, структура и функции комплексов диагностирования.
5. Назначение, состав, структура и функции оценочных и отладочных комплексов.
6. Назначение, состав, структура и функции комплексов развития.
1. Микропроцессоры: кн. 1.- Архитектура и проектирование микроЭВМ. Организация вычислительных процессов - М.: Высшая школа, 1986.
2. Балашов Е. П., Пузанков Д. В. Микропроцессоры и микропроцессорные системы /Под ред. Смолова В. Б. - М.: Радио и связь, 1981.
3. Микропроцессоры и микропроцессорные комплекты интегральных микросхем. Справочник в 2-х томах /Под ред. Шахнова В.А. - М.: Радио и связь, 1988.
4. МикроЭВМ: Практическое пособие / Под ред. Преснухина Л. Н. Кн.2. Персональные ЭВМ. - М.: Высшая школа, 1988.
5. Мячев А. А., Степанов В. М. Персональные ЭВМ и микроЭВМ. Основы организации.: Справочник. - М.: Радио и связь, 1991.
6. Лебедев О.Н. Микросхемы памяти и их применение. - М.: Радио и связь, 1994, 1995. 160 с.
7. Басманов А. С., Широков Ю. Ф. Микропроцессоры и однокристальные микроЭВМ: Номенклатура и функциональные возможности. - М.: Энергоатом-издат, 1988.
8. Абрайтис Б. Б. и др. Микропроцессорный комплект высокого быстродействия К1800. - М.: Радио и связь, 1985.
9. Шевкопляс Б.В. Микропроцессорные структуры. Инженерные решения. Справочник. - М.: Радио и связь, 1993. 256 с.
10. Микропроцессоры. Кн. 3. Средства отладки / Под ред. Преснухина Л. Н. - М.: Высшая школа, 1986.
11. Вычислительные машины, системы и сети. /Под ред. Пятибратова А.П. - М.: Финансы и статистика, 1991.
12. Каляев А. В. Многопроцессорные системы с программируемой архитектурой. – М.: Радио и связь, 1984.
13. Гузик В.Ф., Каляев В.А., Костюк А.И. Организация ЭВМ и систем. Микропроцессор х46. Таганрог, 1998.