Доля применения МПС в различных областях военной техники растет с каждым годом - от навигационных систем летательных аппаратов до управления движением транспортных роботов.
Если определить все множество применений МПС в процентном отношении, то это будет выглядеть следующим образом: информационно-измерительная техника - 16% , управление производством - 18%, авиация и космос - 15%, системы связи - 14 %, вычислительная техника - 20%, военная техника - 9%, бытовая техника - 3%, медицина - 3%, транспорт - 2%, другие области - 7 %.
1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ, ОБЛАСТИ ПРИМЕНЕНИЯ И ОСОБЕННОСТИ РАБОТЫ МИКРОПРОЦЕССОРНЫХ СРЕДСТВ
Микропроцессорной системой (МПС) называется система цифровой обработки информации и управления, содержащая в своем составе, по крайней мере, один микропроцессор (МП), один или несколько модулей основной (ОЗУ и ПЗУ) и дополнительной памяти, устройства ввода и вывода, блоки сопряжения (контроллеры) с устройствами ввода и вывода, которые связаны друг с другом с помощью системной магистрали, состоящей, в общем случае, из магистралей (шин) адресов (МА, ША), магистралей (шин) данных (МД, ШД) и магистралей (шин) управления (МУ, ШУ).
Логическая структура МПС приведена на рис.1.1, где ОУ – объект управления, Д – датчики, ИМ – исполнительные механизмы, ИК – информационные контроллеры, БСД – блок сопряжения с датчиками, БСИК – блок сопряжения с информационными контроллерами, ОП – основная память, ДП – дополнительная память.
Рис. 1.1. Логическая структура МПС
ОЗУ МПС обеспечивает чтение и запись информации и реализуется как энергозависимая память, содержимое которой стирается при выключении МПС. ПЗУ обеспечивает только чтение информации и реализуется в виде энергонезависимой памяти. Контроллеры представляют собой устройства сопряжения аппаратуры ввода-вывода с системной магистралью и реализуют определенный интерфейс. Магистраль обеспечивает коммуникацию аппаратных средств МПС и представляет собой набор проводников и усилителей сигналов.
В зависимости от областей применения МПС подразделяются на специализированные и универсальные, встроенные и автономные.
Основой любой МПС является микроЭВМ - вычислительная или управляющая система, выполненная на основе МП, в состав которой, как правило, входят: постоянная (программируемая) память программ (ПЗУ), память данных (ОЗУ), генератор тактовых импульсов и информационный контроллер, построенные на основе БИС или СБИС.
По способу реализации микроЭВМ подразделяются на однокристальные, одноплатные и многоплатные. В одноплатных микроЭВМ МП выполняется в виде кристалла БИС (СБИС), на котором кроме самого МП могут располагаться и другие компоненты микроЭВМ (ПЗУ, ОЗУ, контроллеры и т.п.).
По назначению микроЭВМ разделяются на универсальные и специализированные (проблемно-ориентированные).
По организации структуры различают одно- и многомагистральные микроЭВМ (рис. 1.2).
Рис. 1.2. Общая структура ЭВМ: а – одномагистральная;б – многомагистральная
В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются данные, адреса и управляющие сигналы. В многомагистральных микроЭВМ устройства группами подключаются к своей информационной магистрали, что позволяет осуществить одновременную передачу по нескольким (или всем) магистралям и тем самым увеличить быстродействие системы.
Центральной частью МПС является микропроцессор - обрабатывающее устройство, выполненное с использованием технологии БИС (часто на одном кристалле) и обладающее способностью выполнять под программным управлением обработку информации (включая ввод-вывод), принятие решений, арифметические и логические операции.
МП характеризуется очень большим числом параметров и качеств, поскольку он, с одной стороны, является функционально сложным программно-управлемым цифровым процессором, т.е. устройством ЭВМ, а с другой стороны – интегральной схемой с высокой степенью интеграции элементов, т.е. электронным прибором.
МП классифицируются по следующим признакам.
По числу БИС в микропроцессорном комплекте - однокристальные и многокристальные МП. Однокристальные МП получаются при реализации всех аппаратурных средств процессора в виде одной БИС или СБИС. Для получения многокристального МП необходимо произвести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС.
По назначению различают универсальные и специализированные МП. По виду обрабатывающих входных сигналов МП делят на цифровые и аналоговые. По характеру временной организации работы - синхронные и асинхронные.
Кроме этого МП, как правило, классифицируются: по технологии изготовления (p-МОП, п-МОП, к-МОП, И2Л и т.д); по числу шин; по разрядности; по способу управления (схемное, микропрограммное); по числу аккумуляторов, уровней прерывания и программных счетчиков; по типу и емкости стека; по числу и длине команд и по видам адресации.
В общем случае в состав МП входят (рис. 1.3): арифметико-логическое устройство (АЛУ), блок прерываний (БП), дешифратор команд и схема управления (ДСК и СУ), регистр команд (РК), буферы адреса и данных (БА, БД), регистры общего назначения (РОН), индексный регистр (ИР), стек (С), его указатель (УС), программный счетчик (ПС), регистр-аккумулятор (А), регистр признаков (РП), схема инкремент-декремент (ИД), блок прерываний (БП).
Конкретные МП, как правило, не содержат всех узлов и блоков, показанных на рис. 1.3. В этих случаях соответствующие функции могут выполняться программно, а в качестве некоторых специальных регистров
Рис. 1.3. Логическая структура МП
могут использоваться РОН или ячейки памяти. В ряде микропроцессорных комплектов отдельные функциональные узлы и блоки выполняются автономно в виде БИС или схем средней степени интеграции.
При проектировании МПС следует учитывать, что их производительность и функциональные возможности напрямую зависят от организации внутренних шин МП - их число существенно влияет на структуру и характеристики МПС в целом.
При определении оптимального числа шин следует учитывать, что уменьшение числа шин приводит к уменьшению быстродействия МП и сопровождается введением дополнительных буферных регистров, увеличивает площадь на кристалле, отводимую под функциональные элементы, и тем самым увеличивает функциональные возможности МП и МПС.
В трехшинном МП при определенной внутренней организации РОН возможно выполнение операций за один такт, включая выборку операндов из РОН и запись результата в один из регистров. Достоинства: высокое быстродействие и отсутствие буферных регистров, недостаток - большая площадь шин на кристалле.
Двухшинная организация при меньшей площади шин требует введения одного-двух буферных регистров и операции выполняются за два такта.
Организация МП на основе одной шины позволяет максимально усложнить архитектуру МП, однако требует введения двух-трех буферных регистров и трех тактов для выполнения операций.
При использовании магистральной организации МПС возникает сложность в подключении выходов нескольких элементов к одной шине (к одному проводнику общей шины). Известны три следующих способа решения этой задачи.
Логическое объединение (рис. 1.4, а) - выполняется с помощью схемы ИЛИ, на входы которой поступают сигналы от разных источников информации, предварительно проклапанированные сигналами управления на входах схем И.
Рис. 1.4. Способы подключения устройств к общей шине
Объединение с помощью схем с открытым коллектором (рис. 1.4, б) характеризуется электрическим соединением выходов нескольких логических элементов. Часто этот способ называют «монтажным ИЛИ» или «монтажным И».
Объединение с использованием схем с тремя состояниями (рис. 1.4, в) отличается именно таким характером нагрузки. В отличие от обычных ключевых схем здесь возможен третий режим, при котором оба транзистора одного каскада (VT1 и VT2 или VT3 и VT4) закрыты. В этом случае со стороны выхода каскад обладает высоким сопротивлением и практически не влияет на состояние общей шины. Если в состоянии высокого сопротивления будут находиться оба каскада, то общая шина может использоваться произвольно любыми внешними по отношению к МП устройствами. Этот способ широко используется при организации прямого доступа к памяти и при построении мультипроцессорных систем.
Кроме широко известных устройств внешней (ЗУ команд и ЗУ данных) и внутренней (РОН) памятей, для которых характерен адресный принцип общения, в МП МПС обычно предусматривается возможность работы с так называемой магазинной памятью (стеком), при обращении к которой не требуется указание адреса. Возможная организация магазинной памяти представлена на рис. 1.5.
Рис. 1.5. Организация стека
Выборка одной из ячеек матрицы памяти осуществляется через дешифратор адреса (ДСА) по адресу, находящемуся на реверсивном счетчике адреса, называемом указателем стека (УС). Начальное значение адреса поступает в УС на вход А. В процессе работы состояние УС при каждой записи уменьшается, а при каждом чтении увеличивается на единицу. Управление режимами записи и чтения выполняет местный блок управления (МБУ).