Смекни!
smekni.com

Нейрокомпьютерные системы (стр. 19 из 32)

OUTi(n+1) = 1, если NETi(n)>0,

OUTi(n+1) = 0, если NETi(n)<0,

OUTi(n+1) = OUT(n), если NETi(n)=0,

где OUTi(n) представляет собой величину выходного сиг­нала нейрона i в момент времени п. Заметим, что в описанных ранее сетях слой 0 не производит вычислений и не имеет памяти; он является только средством распределения выходных сигналов слоя 2 к элементам матрицы Wt.

ВОССТАНОВЛЕНИЕ ЗАПОМНЕННЫХ АССОЦИАЦИЙ

Долговременная память (или ассоциации) реализуется в весовых массивах W и Wt. Каждый образ состоит из двух векторов: вектора А, являющегося выходом слоя 1, и вектора В, ассоциированного образа, являющегося выходом слоя 2. Для "восстановления ассоциированного образа вектор А или его часть кратковременно устанавливаются на выходах слоя 1. Затем вектор А удаляется и сеть приводится в стабильное состояние, вырабатывая ассоции­рованный вектор В на выходе слоя 2. Затем вектор В воздействует через транспонированную матрицу Wt, вос­производя воздействие исходного входного вектора А на выходе слоя 1. Каждый такой цикл вызывает уточнение выходных векторов слоя 1 и 2 до тех пор, пока не будет достигнута точка стабильности в сети. Эта точка может быть рассмотрена как резонансная, так как вектор пере­дается обратно и вперед между слоями сети, всегда обра­батывая текущие выходные сигналы, но больше не изменяя их. Состояние нейронов представляет собой кратковремен­ную память (КП), так как оно может быстро изменяться при появлении другого входного вектора. Значения коэффициентов весовой матрицы образуют долговременную память и могут изменяться только на более длительном отрезке времени, используя представленные ниже в дан­ном разделе методы. В работе [9] показано, что сеть функционирует в направлении минимизации функции энергии Ляпунова в основном таким же образом, как и сети Хопфилда в процессе сходимости (см. гл. 6). Таким образом, каждый цикл модифицирует систему в направлении энергетического минимума, расположение которого определяется значениями весов.

Рис. 7.2. Энергетическая поверхность двунаправленной ассоциативной памяти.

Этот процесс может быть визуально представлен в форме направленного движения мяча по резиновой ленте, вытянутой над столом, причем каждому запомненному обра­зу соответствует точка, «вдавленная» в направлении поверхности стола. Рис. 7.2 иллюстрирует данную анало­гию с одним запомненным образом. Данный процесс форми­рует минимум гравитационной энергии в каждой точке, соответствующей запомненному образу, с соответствующим искривлением поля притяжения в направлении к данной точке. Свободно движущийся мяч попадает в поле притяже­ния и в результате будет двигаться в направлении энер­гетического минимума, где и остановится.

КОДИРОВАНИЕ АССОЦИАЦИЙ

Обычно сеть обучается распознаванию множества образов. Обучение производится с использованием обуча­ющего набора, состоящего из пар векторов А и В. Процесс обучения реализуется в форме вычислений; это означает, что весовая матрица вычисляется как сумма произведений всех векторных пар обучающего набора. В символьной форме

Предположим, что все запомненные образы представ­ляют собой двоичные векторы. Это ограничение покажется менее строгим, если вспомнить, что все содержимое Биб­лиотеки Конгресса может быть закодировано в один очень длинный двоичный вектор. В работе [II] показана возмож­ность достижения более высокой производительности при использовании биполярных векторов. При этом векторная компонента, большая чем 0, становится 1, а компонента, меньшая или равная 0, становится -1. Предположим, что требуется обучить сеть с целью запоминания трех пар двоичных векторов, причем векторы Аi имеют размерность такую же, как и векторы Вi. Надо отметить, что это не является необходимым условием для работы алгоритма; ассоциации могут быть сформированы и между векторами различной размерности.

Вычисляем весовую матрицу

Далее прикладывая входной вектор А = (1,0,0), вычисляем выходной вектор О

Используя пороговое правило

bi = 1 , если Oi>0,

bi = 0 , если Oi<0,

bi не изменяется , если Oi=0

Вычисляем

что является требуемой ассоциацией. Затем, подавая вектор B’1 через обратную связь на вход первого слоя к Wt , получаем

что дает значение (1,0,0) после применения пороговой функции, образуя величину вектора А1. Этот пример показывает, как входной вектор А с использованием матрицы W производит выходной вектор В. В свою очередь вектор В с использованием матрицы Wt производит вектор А, таким образом в системе формирует­ся устойчивое состояние и резонанс. ДАП обладает способностью к обобщению. Например, если незавершенный или частично искаженный вектор пода­ется в качестве А, сеть имеет тенденцию к выработке запомненного вектора В, который в свою очередь стремит­ся исправить ошибки в А. Возможно, для этого потребует­ся несколько проходов, но сеть сходится к воспроизведе­нию ближайшего запомненного образа. Системы с обратной связью могут иметь тенденцию к колебаниям; это означает, что они могут переходить от состояния к состоянию, никогда не достигая стабильнос­ти. В [9] доказано, что все ДАП безусловно стабильны при любых значениях весов сети. Это важное свойство возникает из отношения транспонирования между двумя весовыми матрицами и означает, что любой набор ассоциа­ций может быть изучен без риска возникновения неста­бильности. Существует взаимосвязь между ДАП и рассмотренными в гл. 6 сетями Хопфилда. Если весовая матрица W являет­ся квадратной и симметричной, то W=Wt . В этом случае, если слои 1 и 2 являются одним и тем же набором нейро­нов, ДАП превращается в автоассоциативную сеть Хопфил­да.

ЕМКОСТЬ ПАМЯТИ

Как и сети Хопфилда, ДАП имеет ограничения на максимальное количество ассоциаций, которые она может точно воспроизвести. Если этот лимит превышен, сеть может выработать неверный выходной сигнал, воспроизводя ассоциации, которым не обучена. В работе [9] приведены оценки, в соответствии с которыми количество запомненных ассоциаций не может превышать количества нейронов в меньшем слое. При этом предполагается, что емкость памяти максимизирована посредством специального кодирования, при котором коли­чество компонент со значениями +1 равно количеству компонент со значениями -1 в каждом биполярном векторе. Эта оценка оказалась слишком оптимистичной. Работа [13] по оценке емкости сетей Хопфилда может быть легко расширена для ДАП. Можно показать, что если L векторов выбраны случайно и представлены в указанной выше форме, и если L меньше чем n /(2 1og2n), где п - количество нейронов в наименьшем слое, тогда все запомненные обра­зы, за исключением «малой части», могут быть восстанов­лены. Например, если п = 1024, тогда L должно быть меньше 51. Если все образы должны восстанавливаться, L должно быть меньше n /(2 1og2n), то есть меньше 25. Эти, скорее озадачивающие, результаты показывают, что боль­шие системы могут запоминать только умеренное количест­во ассоциаций. В работе [7] показано, что ДАП может иметь до 2n стабильных состояний, если пороговое значение Т выбира­ется для каждого нейрона. Такая конфигурация, которую авторы назвали негомогенной ДАП, является расширением исходной гомогенной ДАП, в которой все пороги были нулевыми. Модифицированная передаточная функция нейрона принимает в этом случае следующий вид:

OUTi(n+l)=l, если NETi(n)>Ti, OUTi(n+l)=l, если NETi(n)<Ti, OUTi(n+l)= OUTi(n), если NETi(n)=Ti,

где OUTi(t) - выход нейрона i в момент времени t. Посредством выбора соответствующего порога для каждого нейрона количество стабильных состояний может быть сделано любым в диапазоне от 1 до 2, где п есть количество нейронов в меньшем слое. К сожалению, эти состояния не могут быть выбраны случайно; они определя­ются жесткой геометрической процедурой. Если пользова­тель выбирает L состояний случайным образом, причем L меньше (0,68)n2/{[log2(n)]+4}2, и если каждый вектор имеет 4 + log2n компонент, равных +1, и остальные, равные -1, то можно сконструировать негомогенную ДАП, имеющую 98% этих векторов в качестве стабильных состо­яний. Например, если п = 1024, L должно быть меньше 3637, что является существенным улучшением по сравнению с гомогенными ДАП, но это намного меньше 21024 возмож­ных состояния. Ограничение количества единиц во входных векторах представляет серьезную проблему, тем более, что теория, которая позволяет перекодировать произвольный набор векторов в такой "разреженный" набор, отсутствует. Возможно, однако, что еще более серьезной является проблема некорректной сходимости. Суть этой проблемы заключается в том, что сеть может не производить точных ассоциаций вследствие природы поля притяжения; об ее форме известно очень немногое. Это означает, что ДАП не является ассоциатором по отношению к ближайшему сосед­нему образу. В действительности она может производить ассоциации, имеющие слабое отношение ко входному векто­ру. Как и в случае гомогенных ДАП, могут встречаться ложные стабильные состояния и немногое известно об их количестве и природе. Несмотря на эти проблемы, ДАП остается объектом интенсивных исследований. Основная привлекательность ДАП заключается в ее простоте. Кроме того, она может быть реализована в виде СБИС (либо аналоговых, либо цифровых), что делает ее потенциально недорогой. Так как наши знания постоянно растут, ограничения ДАП могут быть сняты. В этом случае как в экспериментальных, так и в практических приложениях ДАП будет являться весьма перспективным и полезным классом искусственных нейрон­ных сетей.