Смекни!
smekni.com

Нейрокомпьютерные системы (стр. 4 из 32)

OUT= 1 / f1+e -NET)=f(NET)

Другой широко используемой активационной функцией является гиперболический тангенс. По форме она сходна с логистической функцией и часто используется биологами в качестве математической модели активации нервной клет­ки. В качестве активационной функции искусственной нейронной сети она записывается следующим образом:

OUT = th(х).

Подобно логистической функции гиперболический тангенс является S-образной функцией, но он симметричен относи­тельно начала координат, и в точке NET = 0 значение выходного сигнала OUT равно нулю (см. рис. 1.46). В отличие от логистической функции гиперболический тан­генс принимает значения различных знаков, что оказыва­ется выгодным для ряда сетей (см. гл. 3). Рассмотренная простая модель искусственного нейро­на игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задер­жки во времени, которые воздействуют на динамику систе­мы. Входные сигналы сразу же порождают выходной сигнал. И, что более важно, она не учитывает воздействий функ­ции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими.

Рис. 1.46. Функция гиперболического тангенса.

Несмотря на эти ограничения, сети, построенные из этих нейронов, обнаруживают свойства, сильно напомина­ющие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпа­дения случайными или следствием того, что в модели, верно, схвачены важнейшие черты биологического нейрона.

ОДНОСЛОВНЫЕ ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

Рис. 1.5. Однослойная нейронная сеть.

Хотя один нейрон и способен выполнять простейшие процедуры распознавания, сила нейронных вычислений проистекает от соединений нейронов в сетях. Простейшая сеть состоит из группы нейронов, образующих слой, как показано в правой части рис. 1.5. Отметим, что вершины-круги слева служат лишь для распределения входных сиг­налов. Они не выполняют каких- либо вычислений, и по­этому не будут считаться слоем. По этой причине они обозначены кругами, чтобы отличать их от вычисляющих нейронов, обозначенных квадратами. Каждый элемент из множества входов Х отдельным весом соединен с каждым искусственным нейроном. А каждый нейрон выдает взвешен­ную сумму входов в сеть. В искусственных и биологичес­ких сетях многие соединения могут отсутствовать, все соединения показаны в целях общности. Могут иметь место также соединения между выходами и входами элементов в слое. Такие конфигурации рассматриваются в гл. 6. Удобно считать веса элементами матрицы W. Матрица имеет т строк и п столбцов, где т. - число входов, а п - число нейронов. Например, w3,2 - это вес, связывающий третий вход со вторым нейроном. Таким образом, вычисле­ние выходного вектора N, компонентами которого являются выходы OUT нейронов, сводится к матричному умножению N = XW, где N и Х- векторы-строки.

МНОГОСЛОЙНЫЕ ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ.

Более крупные и сложные нейронные сети обладают, как правило, и большими вычислительными возможностями. Хотя созданы сети всех конфигураций, какие только можно себе представить, послойная организация нейронов копи­рует слоистые структуры определенных отделов мозга. Оказалось, что такие многослойные сети обладают большими возможностями, чем однослойные (см. гл. 2), и в послед­ние годы были разработаны алгоритмы для их обучения. Многослойные сети могут образовываться каскадами слоев. Выход одного слоя является входом для последу­ющего слоя. Подобная сеть показана на рис. 1.6 и снова изображена со всеми соединениями.

Нелинейная активационная функция

Многослойные сети могут привести к увеличению вычислительной мощности по сравнению с однослойной сетью лишь в том случае, если активационная функция между слоями будет нелинейной. Вычисление выхода слоя заключается в умножении входного вектора на первую весовую матрицу с последующим умножением (если отсутст­вует нелинейная активационная функция) результирующего вектора на вторую весовую матрицу.

Так как умножение матриц ассоциативно, то X(W1, W2). Это показывает, что двухслойная линейная сеть эквивалентна одному слою с весовой матрицей, равной произведению двух весовых матриц. Следовательно, любая многослойная линейная сеть может быть заменена эквива­лентной однослойной сетью. В гл. 2 показано, что одно­слойные сети весьма ограниченны по своим вычислительным возможностям. Таким образом, для расширения возможнос­тей сетей по сравнению с однослойной сетью необходима нелинейная однослойная функция.

Сети с обратными связями.

У сетей, рассмотренных до сих пор, не было обратных связей, т.е. соединений, идущих от выходов некоторого слоя к входам этого же слоя или предшествующих слоев. Этот специальный класс сетей, называемых сетями без обратных связей или сетями прямого распространения, представляет интерес и широко используется. Сети более общего вида, имеющие соединения от выходов к входам, называются сетями с обратными связями. У сетей без обратных связей нет памяти, их выход полностью опреде­ляется текущими входами и значениями весов. В некоторых конфигурациях сетей с обратными связями предыдущие значения выходов возвращаются на входы; выход, следова­тельно, определяется как текущим входом, так и предыду­щими выходами. По этой причине сети с обратными связями могут обладать свойствами, сходными с кратковременной человеческой памятью, сетевые выходы частично зависят от предыдущих входов.

ТЕРМИНОЛОГИЯ, ОБОЗНАЧЕНИЯ И СХЕМАТИЧЕСКОЕ ИЗОБРАЖЕНИЕ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ.

К сожалению, для искусственных нейронных сетей еще нет опубликованных стандартов и устоявшихся терминов, обозначений и графических представлений. Порой идентич­ные сетевые парадигмы, представленные различными авто­рами, покажутся далекими друг от друга. В этой книге выбраны наиболее широко используемые термины.

Терминология.

Многие авторы избегают термина «нейрон» для обозначения искусственного нейрона, считая его слишком грубой моделью своего биологического прототипа. В этой книге термины «нейрон», «клетка», «элемент» используют­ся взаимозаменяемо для обозначения «искусственного нейрона» как краткие и саморазъясняющие.

Дифференциальные уравнения или разностные уравнения.

Алгоритмы обучения, как и вообще искусственные нейронные сети, могут быть представлены как в дифферен­циальной, так и в конечно-разностной форме. При использовании дифференциальных уравнений предполагают, что процессы непрерывны и осуществляются подобно большой аналоговой сети. Для биологической системы, рассматри­ваемой на микроскопическом уровне, это не так. Активационный уровень биологического нейрона определяется средней скоростью, с которой он посылает дискретные потенциальные импульсы по своему аксону. Средняя ско­рость обычно рассматривается как аналоговая величина, но важно не забывать о действительном положении вещей. Если моделировать искусственную нейронную сеть на аналоговом компьютере, то весьма желательно использо­вать представление с помощью дифференциальных уравне­ний. Однако сегодня большинство работ выполняется на цифровых компьютерах, что заставляет отдавать предпоч­тение конечно-разностной форме как наиболее легко про­граммируемой. По этой причине на протяжении всей книги используется конечно-разностное представление.

Графическое представление

Как видно из публикаций, нет общепринятого способа подсчета числа слоев в сети. Многослойная сеть состоит, как показано на рис. 1.6, из чередующихся множеств нейронов и весов. Ранее в связи с рис. 1.5 уже говори­лось, что входной слой не выполняет суммирования. Эти нейроны служат лишь в качестве разветвлений для первого множества весов и не влияют на вычислительные возмож­ности сети. По этой причине первый слой не принимается во внимание при подсчете слоев, и сеть, подобная изо­браженной на рис. 1.6, считается двухслойной, так как только два слоя выполняют вычисления. Далее, веса слоя считаются связанными со следующими за ними нейронами. Следовательно, слой состоит из множества весов со сле­дующими за ними нейронами, суммирующими взвешенные сигналы.