Смекни!
smekni.com

Операционные системы (стр. 3 из 11)

Следующая проблема. Пусть есть два процесса, которые работают на одной машине. Должны быть определенные средства, которые позволят синхронизовать доступ к разделяемой памяти, то есть позволят создать условия, при которых обмен каждого из работающих процессов с оперативной памятью будет происходить корректно. Это значит, что при каждом чтении информации из разделяемой памяти должно быть гарантированно, что все пользователи, которые начали писать что-то в эту память, уже этот процесс завершили - должна быть синхронизация по обмену с разделяемой памятью.

В действительности при решении задач зачастую не требуется таких разделяемых ресурсов, как общая память, но хотелось бы, чтобы процессы, которые функционируют одновременно, могли оказывать некоторое влияние друг на друга. Влияние, аналогичное аппарату прерываний. Для реализации этого во многих ОС имеются средства передачи сигналов между процессами, тогда возникает некоторая программная эмуляция прерываний. Один процесс говорит - передай сигнал другому процессу. В другом процессе возникает прерывание выполнения этого процесса и передача управления на некоторую предопределенную функцию, которая должна обработать полученный сигнал. Это третья функция ОС.

Я обратил ваше внимание на такие функции ОС, которые влияют на ее эксплуатационные свойства. Реально любая ОС также содержит огромный набор других функций, которые обеспечивают работу этой системы.


Лекция №6

На прошлой лекции мы говорили о том, что практически любая операционная система обеспечивает буферизацию ввода/вывода. На самом деле, это одна из основных функций операционной системы. По аналогии борьбы с разными скоростями доступа к различным компонентам вычислительной системы операционная система вводит в своих пределах программную буферизацию, которая также решает проблемы сглаживания времени доступа и проблемы синхронизации в целом (пример с устройством печати). Сглаживание проблем доступа заключается в том, что практически каждая операционная система имеет КЭШ-буфера, которые аккумулируют обращения к внешнему запоминающему устройству (ВЗУ) аналогично аппаратной буферизации при работе с оперативной памятью. Это позволяет существенно оптимизировать операционную систему. Признаком наличия такой буферизации является требование прекратить выполнение операционной системы перед выключением машины. Например, работая с операционной системой MS-DOS, можно выключить компьютер в любой момент времени, потому что такой буферизации в ней нет. В операционных системах типа Windows и UNIX считается некорректным просто выключить машину при работающей системе, в этом случае есть вероятность, что произойдет некоторая потеря информации (так как, например, моменты заказа на обмен и непосредственно обмена далеко не совпадают). Степень этой буферизации определяет реальную эффективность системы. Когда на нашем факультете стали появляться Pentium-ы, то обнаружилось, что при работе с Windows 95 практически нет качественного различия между тем, работает ли система на 486 процессоре или на Pentium-е. Это говорит о том, что эффективность системы не упирается в эффективность работы с внешним устройством. Если взять операционную систему UNIX, то эта разница будет заметна, так как здесь быстродействие процессора сильнее влияет на качество работы системы, нежели чем для Windows 95, потому что в системе Windows 95 обменов с внешним носителем значительно больше за счет некоторой «тупости» алгоритмов буферизации работы с внешними устройствами.

2. Файловая система.

Мы с вами говорили, что каждая из операционных систем оперирует некоторыми сущностями, одной из которых является процесс. Есть вторая сущность, которая также важна - это понятие файла. Файловая система - это компонент операционной системы, обеспечивающий организацию создания, хранения и доступа к именованным наборам данных. Эти именованные наборы данных называются файлами.

Основные свойства файлов

1. Файл - это некий объект, имеющий имя, и позволяющий оперировать с содержимым файла через ссылку на это имя. Обычно имя - это последовательность некоторых символов, длина которой зависит от конкретной операционной системы.

2. Независимость файла от расположения. Для работы с конкретным файлом не требуется иметь информацию о местоположении этого файла на внешнем устройстве.

3. Набор функций ввода/вывода. Практически каждая операционная система однозначно определяет набор функций, обеспечивающий обмен с файлом. Обычно, этот набор функций состоит из следующих запросов:

1. Открыть файл для работы. Открыть можно либо уже существующий, либо новый файл. Может возникнуть вопрос - зачем открывать файл? Почему нельзя сразу читать и писать в этот файл? На самом деле, это есть средство, для того чтобы централизованно объявить операционной системе, что файл будет работать с конкретным процессом. А она уже из этих сведений может принять какие-то решения (например, блокирование доступа в этот файл для других процессов).

2. Чтение/запись. Обычно обмен с файлами может организовываться некоторыми блоками данных. Блок данных, с которым происходит обмен, несет двоякую сущность. С одной стороны, для любой вычислительной системы известны размеры блоков данных, которые наиболее эффективны для обмена, то есть это программно-аппаратные размеры. С другой стороны, эти блоки данных при реальном обмене могут варьироваться достаточно произвольно программистом. В функциях чтения/записи обычно фигурирует размер блока данных для обмена и количество блоков данных, которые необходимо прочесть или записать. От выбранного размера блока данных может зависеть эффективность реальных обменов, потому что, предположим для некоторой машины размером эффективного блока данных является 256Кб, а вы хотите обмены проводить по 128Кб, и вы выполняете два обращения для прочтения ваших логических блоков по 128Кб. Очень вероятно, что вместо того, чтобы за один обмен прочесть блок в 256Кб, вы обращаетесь два раза к одному блоку и читаете сначала одну половину, а затем другую. Здесь есть элементы неэффективности, хотя они могут сглаживаться «умной» операционной системой, а если она не сглаживает, то это уже ваша вина.

3. Управление файловым указателем. Практически с каждым открытым файлом связывается понятие файлового указателя. Этот указатель, по аналогии с регистром счетчика команд, в каждый момент времени показывает на следующий относительный адрес по файлу, с которым можно произвести обмен. После обмена с данным блоком указатель переносится на позицию через блок. Для организации работы с файлом требуется уметь управлять этим указателем. Имеется функция управления файловым указателем, которая позволяет произвольно (в пределах доступного) перемещать указатель по файлу. Указатель есть некоторая переменная, доступная программе, которая связана с функцией открытия файла (создающей эту переменную).

4. Закрытие файла. Эта операция может осуществляться двумя функциями: 1) Закрыть и сохранить текущее содержимое файла. 2) Уничтожить файл.

После закрытия файла все связи с ним прекращаются, и он приходит в некоторое каноническое состояние.

4. Защита данных. Многие стратегические решения повторяются как на аппаратном уровне, так и на уровне операционной системы. Если мы вспомним мультипрограммный режим, то одним из необходимых условий его существования является обеспечение защиты (памяти и данных). Если мы рассмотрим файловую систему, то она так же, как и операционная система, может быть однопользовательской. В этом случае проблемы защиты данных не существует, потому что человек, который работает с этой операционной системой, является хозяином всех файлов. Примеры однопользовательских систем - MS-DOS или Windows 95. Можно загрузить машину и уничтожить все файлы других пользователей, которые размещены на диске, потому что в этих системах защиты нет никакой. Многопользовательская система обеспечивает корректную работу многих пользователей. MS-DOS также может работать в режиме мультипрограммирования, но он не достаточно корректен, потому что ошибка в одном процессе может привести к затиранию операционной системы и соседнего процесса. Также и в операционной системе Windows 95 может работать много пользователей, но эта работа некорректна, потому что эта операционная система не обеспечивает все права защиты. Итак, многопользовательская система должна обеспечивать защиту информации от несанкционированного доступа. На самом деле, проблема защиты связана не только с файловой системой. Реально операционная система обеспечивает защиту данных во всех областях: это и файлы, и процессы, и ресурсы, принадлежащие процессам, запущенным от имени одного пользователя. Здесь я обращаю ваше внимание на этот факт, потому что для файлов это наиболее критичная точка.

Основные свойства файловых систем.

Файловая система естественно включает в себя все те свойства, которые были перечислены для файлов, но добавляет еще некоторые. Эти свойства связаны со структурной организацией файловой системы.

Давайте рассмотрим некоторое пространства ВЗУ, и рассмотрим, как мы можем организовать размещение файлов в пределах этого пространства.

1. Одноуровневая организация файлов непрерывными сегментами. Термин «одноуровневая» означает, что система обеспечивает работу с файлами уникально именованными. В пределах пространства ВЗУ выделяется некоторая область для хранения данных, которая называется каталог. Каталог имеет следующую структуру:

имя

начальный блок

конечный блок

«Начальный блок» ссылается на некоторый относительный адрес пространства ВЗУ, с которого начинается файл с заданным именем. «Конечный блок» определяет последний блок данного файла. Функция открытия файла сводится к нахождению в каталоге имени файла и определении его начала и конца (реально данные могут занимать несколько меньше места, об этом будет сказано позже). Это действие очень простое, к тому же каталог можно хранить в памяти операционной системы, и тем самым уменьшить количество обменов. Если создается новый файл, то он записывается на свободное место. Аналогично каталогу имен может иметься таблица свободных пространств (фрагментов).