Перспективы широкого практического применения МД/О привлекли исследователей к разработке средств проектирования сложных фотонных интегральных цепей. Для четырехканального МД/О был предложен метод инициирования проекта на символическом уровне, а также моделирование (начиная с этого уровня) и создание маски макета. Использованная система автоматического проектирования базировалась на известной специализированной системе проектирования для СВЧ-диапазона.
Моделирование фазара выполнялось в два этапа: сначала создавалась геометрия фазара с желаемой спецификацией, в которую включалось определенное число входных и выходных портов, центральная длина волны и спектральный интервал между каналами, затем моделировалось распространение волн через фазар.
Проект геометрии фазара имел два звездных соединителя, связанных матрицей прямолинейных и изогнутых волноводов. Фазар с N входными и М выходными волноводами описан с помощью (N +M) х (N + M) S-матрицы. Элементы матрицы SiJ вычислялись следующим образом. Сначала определялось поле, излучаемое из порта i, и коэффициенты связи с каждым волноводом матрицы. Затем вычислялось распространение волн в каждом волноводе с учетом потерь на переходах и излучение в изогнутых волноводах. Наконец, с помощью того же метода, что и для входных портов, определялись коэффициенты связи между каждым волноводом матрицы и выходным волноводом j.
Пример символического представления матрицы фазара 6 х 6 вместе с маской схемы показан на рис. 2.14.
Рис. 2.14На следующей стадии проектировалась модель МД/О, состоящего из фазара 6 х 6 и обратных волноводных петель. В траектории петель включены переключатели типа интерферометров Маха-Цандера, которые открывают и закрывают петли. Символическое представление МД/О приведено на рис 2.15.
Четырехканальный МД/О с конструкцией, идентичной рассчитанному проекту, был реализован на основе InP. Сравнение результатов моделирования и измерений показало сдвиг максимума полосы пропускания отдельного
Рис. 2.15
канала на 9 нм. Главным образом это было следствием различия между спроектированной и изготовленной волноводными структурами. Потери составили 7 … 9 дБ, остаточный сигнал в полосе соседнего сигнала оказался примерно па 30 дБ ниже исходного сигнала. Эти значения находятся в хорошем согласии с рассчитанными.
Волноводные спектральные мультиплексоры/демультиплексоры являются ключом к решению проблемы использования всей чрезвычайно широкой полосы пропускания волоконных световодов. Наибольшее развитие получили ВСМ/Д, выполненные на основе SiО2/Si и на InP. Первые обладают меньшими потерями на кристалл, в то время как полупроводниковые пассивные оптические интегральные схемы могут быть непосредственно интегрированы с источниками излучения, усилителями, фотодетекторами и др. При этом на одной подложке могут быть объединены оптические и электронные компоненты. Изготовление оптических волноводных спектральных мультиплексоров выполняется методами стандартной (высококачественной) литографии. Соединение оптических планарных интегральных цепей с волоконными световодами достаточно разработаны и не вносят существенных потерь. Размеры приборов (без корпусов) не превышают 1 - 2 см. Такие характеристики предвещают быстрое развитие производства дешевых, коммерчески приемлемых приборов нового поколения не только для дальней связи, но и для местной широкополосной связи типа дом - дом.
3. Применение оптических циркуляторов в волоконно-оптических системах передачи
Эволюция развития волоконно-оптических систем передачи (ВОСП) от простых линий передачи к более совершенным системам с оптической обработкой сигнала стимулирует создание новых оптических устройств, обладающих невзаимными свойствами, - оптических изоляторов (ОИ) и
оптических циркуляторов (ОЦ). В свою очередь применение таких устройств в аппаратуре ВОСП позволяет расширить функциональные возможности и улучшить характеристики ВОСП.
Оптический циркулятор представляет собой пассивное трех- или четырехпортовое оптическое устройство, которое благодаря своим невзаимным свойствам может распределять поступающее оптическое излучение в различные порты в зависимости от направления распространения излучения. Невзаимность свойств ОЦ (так же, как и ОИ) обусловлена эффектом невзаимного поворота плоскости поляризации (Эффект Фарадея) в магнитоупорядоченных кристаллах, в частности, в кристаллах ферритов-гранатов.
Рис.3.1Схема работы простого трехпортового ОЦ (Y-типа) показана на рис.3.1.а. Оптическое излучение, которое поступает через порт 1, выходит через порт 2. Однако излучение, поступающее в обратном направлении через порт 2, направляется в порт 3, а не в порт 1. Поэтому при использовании двух соседних портов ОЦ функционирует как обычный ОИ, а при использовании всех трех портов может осуществляться двунаправленная передача по одному волокну.
В общем случае ОЦ (Х-типа) имеет четыре порта (рис.3.1.б). Аналогично предыдущему оптический пучок, входящий через порт 3, выходит через порт 4, а входящий через порт 4, выходит через порт 1. Для большинства применений ОЦ достаточно использование первых трех портов.
В настоящее время известно несколько схем построения ОЦ. ГП "Дальняя связь" разработана и выпускается модифицированная схема ОЦ со специальной призмой, имеющей щель.
Рис.3.2
Структура устройства и положение поляризационных компонентов показаны на рис. 3.2, где 1, 2, 3 - волоконные коллиматоры; 4 - специальная поворотная призма со щелью; 5, 7, 8, 9 - двулучепреломляющие элементы из кристалла рутила; 6 - 45-градусный фарадеевский вращатель из кристалла иттрий-железного граната. Принцип работы ОЦ заключается в следующем.
Прямой канал 1-2 фактически является одноступенчатым изолятором, работающим в прямом направлении. Поступающее в ОЦ через порт 1 оптическое излучение с произвольной поляризацией коллимируется линзой 1 и попадает на первый двулучепреломляющий элемент 5 из кристалла рутила. При прохождении через этот элемент входной пучок разделяется на два луча с ортогональной поляризацией - обыкновенный (о-луч) и необыкновенный (е-луч), при этом е-луч отклонятся от первоначального направления и на выходе элемента оказывается смещенным относительно о-луча (позиция "С" на рис. 3.2.б). Далее эти лучи проходят через фарадеевский вращатель поляризации 6, выполненный на основе кристалла иттрий-железного граната. Здесь плоскости поляризации обоих лучей поворачиваются на 45° (позиция "В" на рис.3.2). Затем лучи проходят через второй 7 и третий 8 двулучепреломляющие элементы, где также происходит отклонение лучей.
Поскольку длина и ориентация второго и третьего рутиловых элементов относительно первого выбраны соответствующим образом, два ортогональных поляризованных луча объединяются в один луч (позиция "А" рис.3.2.б), который выходит из ОЦ через порт 2. Таким образом, оптический сигнал с произвольной поляризацией передается из порта 1 в порт 2 с малыми потерями. И поскольку входной сигнал поступает из порта 1 через щель в призме, то порт 3 оказывается полностью "развязанным" от порта 1.
При работе в обратном направлении, когда входной сигнал поступает в порт 2, он проходит те же функциональные элементы, но в обратном направлении. Однако в результате невзаимного поворота плоскости поляризации в фарадеевском вращателе 6 два луча, распространяющиеся в обратном направлении, будут поляризованы ортогонально по сравнению с прямым направлением (позиция "С" рис.3.2.б). Поэтому после прохождения через первый рутиловый элемент 5 эти лучи не сходятся в один, а расходятся на удвоенное расстояние (позиция "D" рис.3.2.б) и не попадают в порт 1 через щель в призме. Следовательно, в этом случае имеет место изоляция порта 1 от порта 2, как в обычном оптическом изоляторе. Пучки, симметрично смещенные относительно щели, отклоняются призмой под углом 90° и направляются в отраженный канал (порт 3), где установлен двулучепреломляющий рутиловый элемент 9. Длина и ориентация этого элемента выбраны таким образом, чтобы поступающие лучи объединились в один луч, выходящий через порт 3. Таким образом, оптический сигнал передается из порта 2 в порт 3 при изоляции порта 1.
3.1.1. Характеристики оптических циркуляторов.
Из принципа работы ОЦ следует, что вносимые в прямой канал потери, заданные выражением А12 = -10 lg P2/P1 (где P1 - мощность на входе 1, Р2 - мощность на выходе 2), определяются суммарным значением потерь коллимирующей системы (включая аберрационные потери линз), потерь в оптических элементах (поглощение, рассеяние и френелевское отражение), отклонением угла фарадеевского вращения от 45° и потерь, связанных с неточностью установки элементов. В зависимости от качества элементов и точности юстировки величина вносимых потерь в прямом канале может составлять А12 ~ 0,8...1,6 дБ. Потери в отраженном канале А23 = -10 lg P3/P2 практически лежат в том же интервале, поскольку поворотная призма 4 и дополнительный рутиловый элемент 9 обладают малыми потерями.