Величина изоляции порта 1 от порта 2, т. е. потери А21 = -10 lg P1/P2 так же как и в случае оптического изолятора, определяются степенью разведения поляризованных лучей в двулучепреломляющих элементах, угловой ошибкой при взаимной ориентации этих элементов, отражением и рассеянием излучения в фарадеевском вращателе, а также ошибками при юстировке элементов. Экспериментально установлено, что рассеяние на различных дефектах в кристаллах рутила и граната ограничивает максимальную величину изоляции на уровне 40...45 дБ.
Как уже отмечалось, в рассматриваемой структуре отсутствует непосредственная связь между портами 1 и 3. Поэтому величина перекрестной помехи на ближнем конце А13 = -10 lg P3/P1 определяется только френелевскими отражениями от торцов первого рутилового элемента и фарадеевского вращателя и может быть снижена до уровня менее - 50 дБ.
Обратные отражения А11, А22, А33 также определяются величиной коэффициента отражения от горцев волокон и от граней элементов. Наклон торцов волокон примерно на 70 и граней элементов примерно на 1 приводит к снижению обратных отражений до уровня 55...-60 дБ.
На основе предложенной структуры (см. рис. 3.2) изготавливаются и предлагаются потребителям одномодовые поляризационно-независимые ОЦ для диапазонов длин волн 1,3 и 1,55 мкм.
3.1.2. Возможные варианты применения оптических циркуляторов в оборудовании волоконно-оптических линий связи.
Первоначально ОЦ разрабатывался для применения в качестве одного из элементов оптического усилителя, позволяющего улучшить характеристики усилителя путем замены простых оптических ответвителей на ОЦ. Кроме того, использование ОЦ позволяет реализовать схему оптического усилителя, работающую в режиме "на отражение".
Рис.3.3
Схема волоконно-оптического усилителя отражательного типа, в котором используется оптический циркулятор, показана на рис.3.3. При такой схеме эффективность действия накачки в активном эрбиевом волокне увеличивается в два раза.
Применение ОЦ перспективно в измерительных системах, в частности, в рефлектометрах. Так, замена традиционного трехдецибельного направленного ответвителя на ОЦ в выпускаемых ГП "Дальняя связь" оптических рефлектометрах ОР-2-1 позволяет увеличить динамический диапазон примерно на 6 дБ, т. е. увеличить дальность действия прибора на 10-15 км в диапазоне 1,55 мкм. Однако более широкое применение ОЦ найдут в качестве элементов волоконно-оптического тракта. В частности, будучи включенными в волоконно-оптический тракт, они обеспечивают одновременную двунаправленную передачу по одному оптическому волокну.
Рис.3.4
Схема испытаний двух образцов ОЦ в составе комплектов аппаратуры ОТГ-32Е при двунаправленной передаче по одному оптическому волокну показана на рис.3.4 (длина волны А =1,55 мкм, скорость передачи В = 34 Мбит/с, ПОМ - передающий оптический модуль, ПРОМ - приемный оптический модуль, ОС - одномодовый оптический соединитель, Атт. - регулируемый одномодовый оптический аттенюатор, ОЦ - оптический циркулятор). Испытания, проведенные при одновременной встречной работе двух комплектов аппаратуры ОТГ-32Е, работающей со скоростью 34 Мбит/с, по одному волокну с включенными двумя ОЦ, показали, что при исходном энергетическом потенциале 32 дБ снижение последнего благодаря использованию ОЦ не превышает 4 дБ. Величина остающегося потенциала достаточна для обеспечения значительной дальности связи при двунаправленной передаче по одному волокну.
Необходимо отметить, что физические принципы работы ОЦ никак не ограничивают скорость передачи информации в создаваемом одноволоконном тракте. Такое техническое решение дает возможность отказаться в обоснованных случаях от прокладки дополнительных оптических кабелей при расширении сети или сохранить работоспособную сеть в условиях выхода из строя нескольких оптических волокон.
Этот же принцип использования ОЦ позволяет достаточно просто решить ряд возникающих у операторов связи задач и дает возможность:
- организовать эффективное уплотнение волоконно-оптического кабеля при ограниченном числе свободных волокон;
- осуществлять контроль целостности волоконно-оптического тракта без перерыва связи с помощью измерения в обратном направлении уровня мощности оптического излучения от какого-либо источника излучения;
- создавать обратный управляющий канал в интерактивных системах кабельного телевидения в условиях, когда до абонента прокладывается лишь одно волокно;
- маскировать полезный оптический сигнал в оптическом волокне путем подачи в обратном направлении более мощного зашумляющего сигнала;
- передавать в обратном направлении сигнал от систем телеконтроля и сигнализации, что обеспечивает полную независимость работы таких систем от основного телекоммуникационного оборудования. Это может представлять особый интерес для операторов ведомственных сетей связи;
- передавать сигналы телевидения без дополнительного уплотнения и занятия групп телефонных каналов.
В заключение следует отметить, что организация одноволоконного тракта с помощью ОЦ существенно упрощает производство и эксплуатацию разъемов для полевых оптических кабелей.
4. Построение передающих и приемных устройств ВОСП ГТС.
4.1.1. Виды модуляции оптических колебаний.
Для передачи информации по оптическому волокну необходимо изменение параметров оптической несущей в зависимости от изменений исходного сигнала. Этот процесс называется модуляцией.
Существует три вида оптической модуляции:
1) Прямая модуляция. При этом модулирующий сигнал управляет интенсивностью (мощностью) оптической несущей. В результате мощность излучения изменяется по закону изменения модулирующего сигнала (рис.4.2).
2) Внешняя модуляция. В этом случае для изменения параметров несущей используют модуляторы, выполненные из материалов, показатель преломления которых зависит от воздействия либо электрического, либо магнитного, либо акустического полей. Изменяя исходными сигналами параметры этих полей, можно модулировать параметры оптической несущей (рис.4.1).
3) Внутренняя модуляция. В этом случае исходный сигнал управляет параметрами модулятора, введённого в резонатор лазера (рис.4.4).
Для внешней модуляции электрооптические (ЭОМ) и акустооптические (АОМ) модуляторы.
Принцип действия ЭОМ основан на электрооптическом эффекте – изменении показателя преломления ряда материалов под действием электрического поля. Эффект, когда показатель преломления линейно зависит от напряженности поля, называется эффектом Поккельса. Когда величина показателя преломления не линейно зависит от напряженности электрического поля, то это эффект Керра. Эффект Поккельса наблюдается в некоторых анизотропных кристаллах, когда эффект Керра в ряде жидкостей (нитроглицерине, сероуглероде).
Акустооптические модуляторы основаны на акустооптическом ЭФФЕКТЕ – изменении показателя преломления вещества под воздействием ультразвуковых волн. Ультразвуковые волны возбуждаются в веществе с помощью пъезокристалла, на который подается сигнал от генератора с малым выходным сопротивлением и большой акустической мощностью.
Наиболее простым с точки зрения реализации видом модуляции является прямая модуляция оптической несущей по интенсивности на основе полупроводникового источника излучения. На рис.4.3 представлена схема простейшего прямого модулятора. Здесь исходный сигнал через усилитель подаётся на базу транзистора V1, в коллектор которого включен излучатель V2. Устройство смещения позволяет выбрать рабочую точку на ватт-амперной характеристике излучателя. Именно прямая модуляция используется на городской телефонной сети в системах «Соната-2» и ИКМ-120.
На рис.4.6 представлена структурная схема оптического передатчика (ОП) с прямой модуляцией несущей. Преобразователь кода ПК преобразует стыковой код, в код, используемый в линии, после чего сигнал поступает на модулятор. Схема оптического модулятора исполняется в виде передающего оптического модуля (ПОМ), который помимо модулятора содержит схемы стабилизации мощности и частоты излучения полупроводникового лазера или светоизлучающего диода. Здесь модулирующий сигнал через дифференциальный усилитель УС-1 поступает в прямой модулятор с излучателем (МОД). Модулированный оптический сигнал излучается в основное волокно ОВ-1. Для контроля мощности излучаемого оптического сигнала используется фотодиод (ФД), на который через вспомогательное волокно ОВ-2 подается часть излучаемого оптического сигнала. Напряжение на выходе фотодиода, отображающее все изменения оптической мощности излучателя, усиливается усилителем УС-2 и подается на инвертирующий вход усилителя УС-1. Таким образом, создается петля отрицательной обратной связи, охватывающая излучатель. Благодаря введению ООС обеспечивается стабилизация рабочей точки излучателя. При повышении температуры энергетическая характеристика лазерного диода смещается (рис.4.5), и при отключенных цепях стабилизации мощности уровень оптической мощности при передаче «0» (Р0) и при передаче «1» (Р1) уменьшаются, разность тока смещения Iб и порогового тока Iп увеличивается, а разность Р1-Р0 уменьшается. После времени установления переходных процессов в цепях стабилизации устанавливаются новые значения Iб и Iп и восстанавливаются прежние значения Р1-Р0 и Рср. Для уменьшения температурной зависимости порогового тока в передающем оптическом модуле имеется схема термокомпенсации (СТК), поддерживающая внутри ПОМ постоянную температуру с заданным отклонением от номинального значения. Современные микрохолодильники позволяют получать отклонения не более тысячных долей градуса.