Смекни!
smekni.com

Передающее устройство систем телеизмерения (стр. 1 из 7)

Содержание

1 Введение________________________________________________ 2

2 Назначение и область применения_________________________ 4

3 Технические характеристики______________________________ 4

4 Структурная схема передатчика___________________________ 5

5 Разработка и расчёт основных блоков схемы________________ 7

5.1 Параметры НС – кода_______________________________________ 7

5.2 Выбор комбинаций НС – кода_______________________________ 10

5.2.1 1 –я посылка___________________________________________ 11

5.2.2 2-ая посылка___________________________________________ 14

5.3 Выбор АЦП_______________________________________________ 16

5.4 Расчёт делителя напряжения________________________________ 19

5.5 Реализация регистра_______________________________________ 20

5.6 Разработка логического узла________________________________ 20

5.7 Выбор передаваемых частот и полос пропускания______________ 21

5.8 Расчёт генераторов гармонических колебаний_________________ 23

5.9 Расчёт полосовых фильтров_________________________________ 25

5.10 Разработка блока управления______________________________ 27

6 Основные требования к алгоритмам диагностирования______ 29

7 Техническая диагностика и прогнозирование________________ 32

8 Связь технической диагностики с надежностью и качеством_ 35

9 Основы теории технической диагностики__________________ 38

10 Разработка технического диагностирования______________ 40

11 Разработка схемы диагностирования_____________________ 44

12 Диагностирование работоспособности системы___________ 46

13 Заключение___________________________________________ 48

Приложение А(задание на бакалаврскую работу)__________________

Приложение Б (список литературы)______________________________

1 Введение

Проектирование современных систем телемеханики в корне отличается от тех же систем спроектированных буквально несколько лет назад. Это объясняется в первую очередь тем, что для построения современных систем телемеханики широко используются интегральные микросхемы и средства вычислительной техники.

Использование современных технологий неизбежно влечёт к повышению скорости работы систем, улучшения качества и размеров систем, повышению точности и т.д., по сравнению со своими предшественниками, выполненными на транзисторах и диодах. Так кроме традиционных функций (телеуправление, телеизмерение, телесигнализация, телерегулирование и передача статистической информации) они могут осуществлять предварительный отбор информации после её сбора, образовывать сигналы, оптимальные для передачи по данному каналу связи, принимать решения для управления местной автоматикой, выдавать по выбору и повторно информацию диспетчеру для визуального контроля и регулирования и т.д.

Кодирование применяемое в современных системах телемеханики позволяет повышать их защищённость от помех за счёт более совершенных кодов которые в схемной реализации более просты чем их соратники, а сжатие данных позволяет увеличить объём передаваемой информации по тем же каналам связи.

Устройства телеизмерения (ТИ) осуществляют передачу на расстояние значений измеряемых величин, их регистрации или ввода данных в автоматическое устройство. Все системы ТИ подразделяют на аналоговые и дискретные. Дискретные системы ТИ наиболее близки по принципам построения схем и используемой аппаратуре к системам телеуправления. Характерная особенность дискретных систем – осуществление в передающем устройстве операции квантования по уровню. При этом вместо передачи непрерывного ряда значений измеряемой величины передаётся конечное её значений (уровней), каждому из которых соответствует при кодировании определённая кодовая комбинация. В зависимости от принципа кодирования различают частотно-импульсные (использующие числовой код) и кодово-импульсные (использующие многоэлементный код) дискретные системы ТИ.

К аналоговым системам принято относить такие системы ТИ, в которых каждому из непрерывного ряда значений измеряемой величины соответствует вполне определённый сигнал ТИ.

Основное преимущество дискретных систем по сравнению с аналоговыми – незначительное влияние изменения параметров линии связи и помех в каналах связи на передаваемые сигналы.

К преимуществам кодово-импульсных систем ТИ следует отнести высокую помехоустойчивость и отсутствие принципиальных ограничений для повышения точности телепередачи, обусловленные дискретным характером сигналов. Кроме того, такие системы приспособлены для вывода информации в цифровой форме.

В кодово-импульсных системах кодируется либо угол поворота стрелки первичного измерительного прибора, либо унифицированный электрический параметр (ток или напряжение), в которой предварительно преобразуется измеряемая величина.

Задача кодирования сообщения в общем случае заключается в согласовании свойств источника сообщений со свойствами канала связи. Различают кодирование источника сообщений (эффективное кодирование) и кодирование, учитывающее влияние помех в канале связи (помехоустойчивое кодирование).

2 Назначение и область применения

Устройства телеизмерения осуществляют передачу на расстояние значений измеряемых величин, их регистрации или ввода данных в автоматическое устройство. В основном такие системы применяются в условиях, когда передача данных затруднительна в прямом виде, тогда стаёт вопрос о применении таких систем.

3 Технические характеристики

Основные технические характеристики разрабатываемого передатчика системы телеизмерения имеют следующие значения:

- диапазон изменения измеряемой величины, В 0 – 15
- допустимая приведённая погрешность измерения, В 2.8
- максимальная частота изменения измеряемого напряжения, Гц 100
- метод разделения сигналов Частотно-временной
- метод избирания

Частотно-распределительно-комбинационный

Вид проектируемого устройства

Передатчик

- код

Неприводимый сменно-посылочный (НС)

4 Структурная схема передатчика

Разрабатываемая схема приёмника должна осуществлять передачу полученной информации без временных интервалов между посылками, а также производить её обработку с наименьшим временем.

Структурная схема изображена на рисунке 4.1.


Измеряемое напряжение поступает на вход делителя напряжения, предназначенного для согласования уровня входного сигнала с входом АЦП. Преобразованное напряжение поступает на АЦП, с выхода которого часть двоичного кода, соответствующая первой посылке, сразу же подаётся на блок кодирования (блок логических устройств), а остальная часть – на триггеры, выступающие в роли регистра. Блок регистров предназначен для хранения двоичного кода в то время, когда выходы АЦП находятся в Z – состоянии, что позволяет осуществлять беспрерывную передачу. С выхода блока регистров двоичный код поступает на логический блок (блок кодирования), где происходит преобразование двоичного кода в неприводимый сменно-посылочный код. Сигналы с выхода логического блока поступают на блок преобразования в частоту логических сигналов, где находятся генераторы частоты, ключи включения генераторов, полосовые фильтры и сумматор. Колебания с выходов полосовых фильтров поступают на сумматор, с выхода которого в линию поступает выходной сигнал. Работой вышеперечисленных блоков управляет блок управления, который должен производить следующие операции:

· запуск АЦП на преобразование;

· управление передачей данных с АЦП;

· управлять записью в регистры;

· управлять очерёдностью выдачи в линию посылок.

5 Разработка и расчёт основных блоков схемы

5.1 Параметры НС – кода

Допустимая погрешность для АЦП определяется по следующей формуле:

g=0,5gдоп , (5.1)

g=0,5*2.8 = 1.4%.

Количество уровней квантования АЦП (N):

N = 100/g + 1, (5.2)

N = 100/1.4 + 1 = 72.4 .

Поскольку такая разрядность не может быть достигнута то принимаем N=128.

Разрядность кодовой комбинации (n):

n = log2 N, (5.3).

n = log2 128 = 7.

Для преобразования комбинаций двоичного кода (ДК) в НС – код комбинации ДК разбиваются на n групп, число которых равно числу посылок НС – кода nв.

Комбинациям ДК каждой группы присваиваются комбинации частот из соответствующих групп сочетаний, образованных для построения посылок НС – кода .При разбиении разрядов ДК на группы, а так же при формировании комбинаций посылок НС – кода следует учитывать, что число возможных перестановок в группе (комбинаций ДК) не должно превышать количества комбинаций соответствующих посылок:

, (5.4)

где

Niгрдк – число комбинаций i – ой группы ДК;

Nnвi – количество комбинаций i – ой посылки НС.

Выбор числа частотных позиций nчдля построения комбинаций посылок НС – кода производится из условия:

. (5.5)

Примем nв = 3 (nв – количество посылок).

Для преобразования семиразрядного ДК в НС – код , у которого nв=3 mч=2, количество необходимых комбинаций:

Nком³ 23+2*22 =16.

При nч = 7 Nком = 21,а при nч = 6 Nком = 15 ,поэтому будем использовать 7 частотных позиций.