При таком определении кубического сплайна, он имеет еще свободных параметра, для нахождения которых на сплайн налагаются дополнительные краевые условия. Например
или и , или некоторые другие.Полиномиальный интерполяционный сплайн произвольной степени m дефекта r определяется как функция
, удовлетворяющая, кроме условий и , еще дополнительно условиям совпадения в узлах сетки значений функции и интерполированной функции и их производных до некоторого порядка.Часто при обработке эмпирических данных
коэффициенты в определяют исходя из требования минимизации суммы - заданные числа, .Такое построение функции называют интерполированием по методу наименьших квадратов.
Интерполирование функций многих переменных имеет ряд принципиальных и алгебраических трудностей. Например в случае алгебраической интерполяции интерполяционный многочлен Лагранжа фиксированной степени, вообще говоря, не существует для произвольной схемы различных узлов интерполяции. В частности для функций двух переменных
такой многочлен суммарной степени не выше n может быть построен по узлам лишь при условии, что эти узлы не лежат на алгебраической кривой порядка n.Другой поход к интерполированию функции многих переменных
стоит в том, что сначала интерполируется функция по переменной при фиксированных потом по следующей переменной при фиксированных и т.д. интерполяционные сплайны для функций многих переменных определяются по многомерной сетке при соответствующих изменениях по аналогии с одномерным случаем.Интерполирование функций и численные методы. Интерполирование функции используется:
1. для замены сложно вычисляемой функции другой, вычисляемой проще
2. для приближенного восстановления функции на всей области задания по значениям её в отдельных точках или по другим известным величинам
3. для получения сглаживающих функций
4. для приближенного нахождения предельных значений функции
5. в задачах ускорения сходимости последовательностей и рядов и в других вопросах.
Общие идеи построения интерполяционных методов решения уравнения
=0 и систем уравнения , одни и те же. Трудности задачи интерполирования функций многих преременных особенно сказывается при исследовании и практическом использовании такого рода методов для большого числа уравнений. В основу получении интерполяционных методов решения уравнения =0 положена замена функции ее интерполяционным многочленом и последующим решением уравнения =0 берутся за приближенные решении уравнения =0 интерполяционный многочлен используется так же при построении итерационных методов решения уравнения =0.Например взяв за
корень линейного интерполяционного алгебраического многочлена, построенного по значениям и в узле или по значениям и в узлах и , приходят соответственно к методу Ньютона и метода секущих ,где
- разделенная разность функций для узлов и .Другой подход к построению численных методов решения уравнения
=0 основан на интерполировании обратной функции . Пусть в качестве интерполяционной формулы для функции взят интерполяционный алгебраический многочлен Лагранжа , построенный по узлам Тогда за следующее приближению к корню уравнения =0 берется величина .Численное интегрирование. Аппарат интерполирования функции лежит в основе построения многих квадратурных и кубатурных формул. Такого рода формулы строятся путем замены интегрируемой функции на всей области или на её составных частях интерполяционными многочленами того или иного вида и последующим интегрированием этих многочленов. Например квадратурные формулы наивысшей алгебраической степени точности, так называемые квадратурные формулы Гаусса:
где
- знакопостоянная весовая функция, получаемая в результате замены функции интерполяционным алгебраическим многочленом, построенным по корням ортогонального относительно веса многочлена степени n.Изложенная выше схема построения формул для приближенного вычисления интегралов применима и в многомерном случае
Формулы численного дифференцирования, в основе которых лежит интерполирование, получаются в результате дифференцирования интерполяционных многочленов. Ввиду неустойчивости задачи численнго дифференцирования относительно ошибок использования значений функций в узлах шаг интерполирования должен согласоваться с погрешносьтью значений функций. Поэтому на практике нередки случаи, когда известная на густой сетке функция используется в данной задаче не во всех точках, а на более редкой сетке.
При численном решении интегральных уравнений, известная функция
заменяется в интегральном уравнении каким-либо интерполяционным приближением (интерполяционным алгебраическим многочленом, интерполяционным сплайном и т.д.) с узлами интерполирования , а приближенные значения для находятся из системы, полученной после подстановке вместо независимости переменной x узлов интерполирования . В случае нелинейных интегральных уравнений приближенные значения находятся соответственно из нелинейной системы.