ТАБЛИЦА 3 - ПРОТОКОЛЫ И СООТВЕТСТВУЮЩИЕ ТИПЫ КАДРОВ
Формат кадра | Протокол | Способ идентификации вышележащего протокола |
Ethernet_II | DecNET, LAT, старые реализации TCP/IP | Поле типа протокола |
802.3 | NetWare 3.х | Первые два байта поля данных равны 0xFFFF |
802.2 | NetWare 4.х, LLC2 | Поле DSAP |
SNAP | EtherTalk, новые реализации TCP/IP | Пятибайтное поле после служебной информации LLC |
Как уже говорилось, после обнаружения конфликта станции ждут случайный промежуток времени. Единицей измерения времени (квантом времени) является удвоенное время распространения сигнала из конца в конец отрезка кабеля (см. выше), равное 51,2 мс. После первого конфликта каждая станция ждет 0 или 1 квант времени, прежде чем попытаться возобновить передачу. Если конфликт произошел вновь, так как две станции выбрали одно и то же случайное число, то каждая из них выбирает после второго конфликта уже из четырех чисел 0, 1, 2, 3. Если же конфликт имеет место и в третий раз, (что вполне вероятно, когда более двух станций пытаются начать передачу одновременно), то в следующий раз случайное число слотов выбирается из интервала 0-7 и т. д. Однако, после 10 последовательных конфликтов интервал выбора случайных чисел фиксируется и задается равным 1023. После 16 конфликтов контроллер отказывается от дальнейших попыток передать кадр и сообщает об этом компьютеру. Все дальнейшие действия по исправлению ситуации должны осуществляться высокоуровневыми протоколами. Такой алгоритм позволяет разрешить коллизии, когда конфликтующих станций немного, а также ликвидировать их за приемлемое время, когда множество станций хочет передавать одновременно.
В качестве физической среды передачи стандарт для Ethernet на 10 Мбит/с определяет тонкий и толстый коаксиальный кабель, витую пару и даже оптоволокно. Вкупе с прочими факторами такое разнообразие возможных сред передачи немало способствовало росту популярности Ethernet. Ниже мы рассмотрим вкратце спецификации Ethernet на 10 Мбит/с.
10Base5. Как и изначальная версия Ethernet, эта спецификация в качестве среды передачи предусматривает толстый коаксиальный кабель на 50 Ом с двумя оболочками. По этой причине в англоязычной литературе ее иногда еще называют Thicknet и толстым Ethernet. Каждый коаксиальный кабель в сети образует отдельный сегмент. Протяженность сегмента не может превышать 500 м, а число узлов - 100, причем отрезок кабеля между соседними узлами должен быть не менее 2,5 м. Это позволяет уменьшить вероятность отражений и появления стоячих волн. Как правило, производители предусматривают соответствующую разметку кабеля в целях упрощения идентификации мест, где станция может быть подключена к сегменту. Контроллер станции, т. е. сетевая плата, подключается к кабелю с помощью трансиверного кабеля и трансивера (см. Рисунок 13). Длина трансиверного кабеля не должна превышать 50 м.
Рисунок 13
В 10Base5 узел подключается к кабелю с помощью трансивера и трансиверного кабеля.
Рисунок 14
В 10Base2 узел подключается к кабелю напрямую с помощью соединителя BNC-T.
Рисунок 15
В 10BaseT узлы подключаются к концентратору по физической топологии "звезда".
10BaseF. Принятая относительно недавно, эта спецификация предусматривает использование в качестве среды передачи оптический кабель. Естественно, это весьма дорогостоящая разновидность Ethernet, и не столько из-за стоимости самого кабеля, сколько из-за дороговизны соединителей и терминаторов. Однако она не чувствительна к электромагнитным помехам и позволяет связывать по Ethernet здания и далеко отстоящие друг от друга концентраторы.
Каждая из разновидностей Ethernet предусматривает те или иные ограничения на протяженность сегмента кабеля. Для создания более протяженной сети несколько кабелей может быть соединено с помощью повторителей. Повторитель представляет собой устройство физического уровня. Он принимает, усиливает и передает сигнал дальше в обоих направлениях (таким образом, повторитель полностью прозрачен для кадров Ethernet). С точки зрения программного обеспечения последовательность кабельных сегментов, связанных повторителями, ничем не отличается от одного кабеля. Сеть может содержать несколько сегментов кабеля и несколько повторителей, но никакие два узла не должны отстоять друг от друга на расстояние свыше 2,5 км, а путь между ними - пролегать более чем через четыре повторителя.
Технология Ethernet не стоит на месте. Коммутируемые Ethernet и Fast Ethernet вывели ее на новые рубежи скорости и производительности, а с появлением Gigabit Ethernet старый добрый Ethernet вообще рискует оказаться в роли дедушки.
ТАБЛИЦА 4 - РАЗНОВИДНОСТИ ETHERNET
Стандарт | Кабель | Максимальная протяженность сегмента | Допустимое число узлов в сегменте | Достоинства |
10Base5 | Толстый коаксиальный | 500 м | 100 | Хорош для магистрали |
10Base2 | Тонкий коаксиальный | 200 м | 30 | Дешевая система |
10BaseT | Витая пара | 100 м | 1024 | Простота эксплуатации |
10BaseF | Оптический кабель | 2000 м | 1024 | Между зданиями |
Таблица 5. Основные характеристики сетей по методам передачи информации.
Характеристики | Методы передачи информации | ||
Ethernet | Token Ring | ArcNet | |
Топология | Локальная типа «шина» | Кольцевая или типа «звезда-кольцо» | Наборы сегментов типа «звезда» |
Тип кабеля | RG–58 | Экранированная или неэкранированная витая пара | RG–62 или RG–59 |
Импеданс | 50 Ом | — | — |
Сопротивление терминаторов | 50 Ом, ± 2 Ом | 100 – 200 Ом UTP, 150 Ом TP | RG–59: 75 Ом RG–62: 93 Ом |
Максимальная длина кабеля в сегменте | 185 м | 45 – 200 м (в зависимости от используемого кабеля) | В зависимости от используемого кабеля, но в среднем: W–W: 120 м A–A: 606 м P–W или P–A: 30 м A–A: 0,3 м[1] |
Минимальный промежуток между соседними компьютерами | 0,5 м | 2,5 м | В зависимости от используемого кабеля |
Максимальное количество соединенных сегментов | 5 | 33 устройства MAU | Не поддерживает соединения сегментов |
Максимальное количество компьютеров в сегменте | 30 | Неэкранированная витая пара: 72 рабочих станции на концентратор, при использовании экранированной витой пары – 260 рабочих станций на концентратор | В зависимости от используемого кабеля |
Практическая часть.
Реализация в реально действующем проекте ЛВС крупной организации.
(Название является коммерческой тайной, и поэтому скрыто. Также сохранена нумерация пунктов оригинального документа. Параграф 1 содержал общие описания и вводную часть.)
2.1. Создаваемая система должна обеспечивать среду передачи данных между вычислительными комплексами, расположенными в здании М РК , и выполнять базовые функции по разделению их ресурсов, а также обеспечивать коллективный доступ к сети передачи геолого-геофизических данных Министерства геологии и охраны недр Республики Казахстан.