Общий контурный КПД:
;В принципе устройство может быть изготовлено с использованием микрополосковой технологии1, поскольку в диапазоне 0,25… 1 ГГц такая технология применяется достаточно широко, но в нашем случае получается реализовать изделие на сосредоточенных элементах, поскольку нам удалось выбрать сосредоточенные резисторы и конденсаторы для данного диапазона частот (пп. 4.1. и 4.2.). Внешний вид и геометрические размеры выбранных элементов показаны на рис. 13… 17.
Так как стандартные индуктивности рассчитанных нами номиналов (пп. 4.1. и 4.2.) отсутствуют в номенклатуре элементной базы, производимой радиоэлектронной промышленностью, мы изготовим индуктивности из отрезков прямых проводников диаметром 0,5 мм.
Известно, что индуктивность L отрезка проводника круглого сечения длиной l равна
,где d — диаметр проводника, причем d и l необходимо подставлять в сантиметрах, тогда L получится в нГн.
С помощью пакета Mathcad Professional 7 было проведено исследование зависимости индуктивности отрезка проводника круглого сечения от его длины для трех различных диаметров (d=0,5 мм (рис. П.1.1.), d=0,6 мм (рис. П.1.2.), d=1,0 мм (рис. П.1.2.), файлы ind05mm.mcd, ind06mm.mcd, ind1mm.mcd соответственно, см. Приложение 1).
Из представленных зависимостей видно, что для данного значения индуктивности (например, 30 нГн) самым коротким будет самый тонкий проводник (l=32,8 мм, (d=0,5 мм), l=34 мм, (d=0,6 мм), l=37,2 мм, (d=1 мм)).
Следовательно, индуктивности L1, …, L8 будем изготавливать из отрезков проводника диаметром d=0,5 мм. Длину отрезка будем вычислять по полученной номограмме (рис. П.1.1.). Таким образом,
L1=0,378 нГн: 1,5 мм;
L2=3,32 нГн: 6 мм;
L3=31,83 нГн: 34 мм;
L4=21,19 нГн: 25 мм;
L5=34,98 нГн: 37 мм;
L6=15,6 нГн: 19 мм;
L7=11,46 нГн: 15 мм;
L8=19,82 нГн: 23,5 мм.
Исходя из жестких требований, предъявляемых к изделию (устанавливается на борту ЛА), в частности к его размерам и в особенности к массе, необходимо насколько возможно повысить плотность упаковки (интеграции) элементов на печатной плате, в связи с чем мы выбираем коэффициент дезинтеграции Kд равным 2.
Для выбора типоразмера печатной платы необходимо вычислить суммарную площадь, занимаемую элементами, умножить ее на коэффициент дезинтеграции Kд и из стандартного ряда типоразмеров выбрать плату равной или чуть большей площади. Площади, занимаемые элементами, приведены в табл. 1.
Суммарная площадь элементов:
SΣ=2(196·1+175·1+0,75·1+3·1+17·1+12,5·1+18,5·1+9,5·1+7,5·1+11,75·1+13,2·2+
+31,28·10+31,28·1+42,25·2)=1834,58 мм2.
Выбираем плату размером 35´60 мм; S=2100 мм2.
Печатную плату будем изготавливать субтрактивным методом, суть которого заключается в следующем. На поверхность фольгированной печатной платы наносится фоторезист, поверх которого размещается негативный фотошаблон, отражающий конфигурацию и расположение печатных проводников, т. е. имеющий прорези и отверстия в тех местах, где должны быть расположены токоведущие участки. Во время экспонирования эти участки окажутся засвеченными. После экспонирования фоторезист задубливают, т. е. помещают плату в специальный раствор, в котором засвеченные участки фоторезиста становятся нерастворимыми. После задубливания следует этап травления, в ходе которого незасвеченный фоторезист и фольга, находящаяся под ним, растворяются в травящем растворе. Потом остатки задубленного фоторезиста также удаляются. После смывания остатков фоторезиста плату высушивают, покрывают защитным лаком и устанавливают на нее элементы. В нашем случае вполне допустима пайка волной припоя, с тем условием, что транзисторы будут установлены отдельно — в последнюю очередь, т. к. они чувствительны к перегреву и имеют планарные выводы.
Таблица 1
Элемент | Площадь, мм2 | Количество, шт. |
Транзисторы | ||
2Т934А | S=196 мм2; | 1 |
2Т919А | S=175 мм2; | 1 |
Индуктивности | ||
L1 | S=0,75 мм2; | 1 |
L2 | S=3 мм2; | 1 |
L3 | S=17 мм2; | 1 |
L4 | S=12,5 мм2; | 1 |
L5 | S=18,5 мм2; | 1 |
L6 | S=9,5 мм2; | 1 |
L7 | S=7,5 мм2; | 1 |
L8 | S=11,75 мм2; | 1 |
Резисторы | ||
С2-33Н | S=13,2 мм2; | 2 |
Конденсаторы | ||
К10-17-1-П33 | S=31,28 мм2; | 10 |
К10-17-1-М750 | S=31,28 мм2; | 1 |
КМ-6-М1500 | S=42,25 мм2; | 2 |
Поскольку изделие устанавливается на борту ЛА и будет подвержено перепадам давления, целесообразно обеспечить герметизацию корпуса изделия с помощью эластичной прокладки. Помимо этого, бортовая аппаратура должна быть вибропрочной и виброустойчивой, и в то же время достаточно легкой. Исходя из этого, корпус модуля АФАР логично будет изготовить из алюминия методом литья.
Кроме того, в корпусе будут иметь место три отверстия для трех разъемов — двух высокочастотных (сигнальных) — входного и выходного и низкочастотного разъема для подачи питания. Все разъемы также из соображений виброустойчивости необходимо оснастить защелками, препятствующими произвольному рассоединению модуля и бортовых коммуникаций.
Печатная плата будет притянута к днищу корпуса четырьмя винтами, входящими в отверстия по углам платы и ввинчивающимися в четыре бобышки, составляющими единое целое с днищем корпуса. Помимо этого, для удобства размещения и закрепления модуля АФАР на борту ЛА, необходимо предусмотреть нечто вроде салазок, проходящих вдоль днища корпуса.
Для обеспечения ремонтопригодности корпус изделия надлежит сделать ограниченно разборным: щель между крышкой и основанием корпуса будет запаяна, а в шов будет проложена проволока, оканчивающаяся петлей. В случае необходимости проволоку можно будет вытянуть, разрушив пайку, и снять крышку корпуса.
1. Грановская Р. А. Расчет каскадов радиопередающих устройств. — М.: МАИ, 1993.
2. Грановская Р. А. (ред.) Проектирование активных элементов модулей АФАР дециметрового диапазона. Учебное пособие. — М.: МАИ, 1980.
3. Грановская Р. А. (ред.) Проектирование активных элементов модулей АФАР сантиметрового диапазона. Учебное пособие. — М.: МАИ, 1980.
4. Транзисторы. Справочник (Массовая радиобиблиотека) — М.: «Радио и связь», 1989.
5. Полупроводниковые приборы: транзисторы. Справочник. — М.: «Энергоиздат», 1982.
6. Масленников М. Ю., Соболев Е. А., Соколов Г. В., Соловейчик Л. Ф., Переверзева А. В., Федотов Б. А. Справочник разработчика и конструктора РЭА. Элементная база (книга I). М.: «Энергоатомиздат», 1993.
7. Александров К. К., Кузьмина Е. Г. Электротехнические чертежи и схемы. — М.: «Энергоатомиздат», 1990.
8. Истомин А. Н., Породин Б. М. Методические указания к выполнению РГР по расчету электропреобразовательных устройств. — М.: МАИ, 1992.
1 Iкр — значение тока коллектора, при достижении которого частота падает на 3 дБ (в два раза) по отношению к ее максимальному значению при заданном напряжении коллектор-эмиттер.
1 По-хорошему-то!