И отдельно хочется коснуться нового форм-фактора и процессорного разъема, который теперь использует AMD для своих CPU. Поскольку микросхем SRAM, используемых для внешнего L2-кеша у новых процессоров Duron и Thunderbird теперь нет, AMD вслед за Intel вновь обратила внимание на процессорный разъем типа socket. Это не только более выгодно из экономических соображений (нет необходимости в процессорной плате, картридже и т.п.), но и более рационально с точки зрения организации лучшего охлаждения. В качестве такого разъема AMD решила использовать 462-контактный Socket A, который по своим размерам, да и по внешнему виду похож как на Socket 7, так и на Socket 370. Поэтому, с Socket A процессорами AMD можно использовать старые Socket 7 и Socket 370 кулеры. Единственное, не следует при этом забывать, что тепловыделение Duron несколько превосходит количество тепла, отдаваемое Celeron, поэтому они нуждаются в несколько лучшем охлаждении. Например, Duron 650 выделяет тепла примерно столько же, сколько и Intel Pentium III 733.
У AMD Duron с системной шиной все в порядке. Поскольку этот процессор, как и остальные из семейства Athlon использует 100-мегагерцовую DDR шину EV6, пропускная способность этого звена оказывается 1,6 Гбайт/с. Кеш первого уровня Duron со времен выпуска первых Athlon не претерпел никаких изменений - его размер составляет 128 Кбайт. Кеш первого уровня Duron делится на две части - для кеширования данных и для кеширования инструкций.
Что же касается кеша второго уровня, то тут нас ждет небольшой сюрприз. Нетрудно заметить, что у Duron он в два раза меньше чем L1 кеш. Зачам он тогда нужен? Ответ на этот вопрос кроется в алгоритме работы L2 кеша Duron и, кстати, Thunderbird. Кеш второго уровня этих процессоров является эксклюзивным, что означает, что данные, хранящиеся в L1 кеше в нем не дублируются. Такой метод работы L2 кеша реализован пока только в новых процессорах AMD, все же интеловские процессоры имеют обычный inclusive L2 кеш, данные из L1 кеша в котором дублируются. Поэтому общий объем эффективной кеш-памяти у AMD Duron составляет 128+64=192 Кбайта, в то время как у Celeron он всего 128 Кбайт (32 Кбайта L2 кеша занято копией данных, имеющихся в L1 кеше).
Чтобы проиллюстрировать все вышесказанное приведу графики, показывающие скорость записи в память блоков данных различного размера для процессоров AMD Duron 650:
Процессор AMD Duron удался. Это можно сказать определенно. Его производительность находится на достаточно высоком уровне, чтобы не только обогнать конкурирующий Intel Celeron, но и вообще не оставить ему никаких шансов в штатном режиме. Производительность AMD Duron 650 всего на несколько процентов меньше скорости AMD Athlon 650 и примерно соответствует производительности Intel Pentium III 600EB. Таким образом, выход Duron, если Intel не предпримет никаких действий для улучшения производительности своего low-end процессора, означает смерть Celeron.
AMD Athlon
Если подойти к архитектуре AMD Athlon поверхностно, то основные его параметры можно обрисовать следующим образом:
Однако таким простым процессор AMD Athlon кажется только лишь на первый взгляд. На самом же деле за этими несколькими строками скрываются многочисленные архитектурные инновации, которые мы рассмотрим позднее. Однако и простые характеристики AMD Athlon впечатляют. Например, как нетрудно заметить, Athlon превосходит Intel не только по максимальной тактовой частоте (у Intel Pentium III она 600 МГц, да и к тому же при этом он работает на повышенном до 2.05В напряжении ядра), но и по размеру кеша первого уровня, который у Intel Pentium III всего 32 Кбайта.
Перейдем же к более подробному рассмотрению архитектуры AMD Athlon.
Прежде чем углубляться в сам процессор, посмотрим, чем же отличается системная шина EV6, примененная AMD, от привычной интеловской GTL+. Внешнее сходство бывает обманчиво. Хотя процессорный разъем Slot A на системных платах для процессора AMD Athlon выглядит также как и Slot 1, перевернутый на 180 градусов, шинные протоколы и назначения контактов у Intel Pentium III и AMD Athlon совершенно различны. Более того, различно даже число задействованных сигналов - Athlon использует примерно половину из 242 контактов, в то время как Pentium III всего четверть. Внешняя похожесть вызвана тем, что AMD просто хотела облегчить жизнь производителям системных плат, которым не придется покупать особенные разъемы для установки на Slot A системные платы. Только и всего.
На самом же деле, хоть EV6 и работает на частоте 100 МГц, передача данных по ней, в отличие от GTL+ ведется на обоих фронтах сигнала, потому фактическая частота передачи данных составляет 200 МГц. Если учесть тот факт, что ширина шины EV6 - 72 бита, 8 из которых используется под ECC (контрольную сумму), то получаем скорость передачи данных 64бита х 200 МГц = 1,6 Гбайт/с. Напомню, что пропускная способность GTL+, работающей на 100 МГц в два раза меньше - 800 Мбайт/с. Повышение частоты GTL+ до 133 МГц дает увеличение пропускной способности при этом только до 1,06 Гбайт/с. Казалось бы, как в случае с GTL+, так и с EV6 получаются внушительные значения пропускной способности. Однако, только современная PC100 память может отожрать от нее до 800 Мбайт/с, а AGP, работающий в режиме 2x - до 528 Мбайт/с. Не говоря уже о PCI и всякой другой мелочевке. Получается, что GTL+ уже сейчас может не справляться с передаваемыми объемами данных. У EV6 же в этом случае все в порядке, потому эта шина более перспективна.
При этом, как частота GTL+ может быть увеличена со 100 до 133 МГц, планируется, что и частота EV6 также впоследствии достигнет значения 133 (266), а затем и 200 (400) МГц. Однако планы эти могут и не осуществиться - реализовать работу на материнской плате EV6, требующую большего количества контактных дорожек, несколько сложнее, особенно на больших частотах. Хотя если у AMD все получится, пропускная способность системной шины может достичь 2.1 и 3.2 Гбайта/с соответственно, что позволит беспрепятственно применять в Athlon-системах, например, высокопроизводительную 266-мегагерцовую DDR SDRAM.
Прежде чем переходить непосредственно к функционированию AMD Athlon, хочется затронуть тему L1 и L2 кешей.
Что касается кеша L1 в AMD Athlon, то его размер 128 Кбайт превосходит размер L1 кеша в Intel Pentium III аж в 4 раза, не только подкрепляя высокую производительность Athlon, но и обеспечивая его эффективную работу на высоких частотах. В частности, одна из проблем используемой Intel архитектуры Katmai, которая, похоже, уже не позволяет наращивать быстродействие простым увеличением тактовой частоты, как раз заключается в малом объеме L1 кеша, который начинает захлебываться при частотах, приближающихся к гигагерцу. AMD Athlon лишен этого недостатка.
Что же касается кеша L2, то и тут AMD оказалось на высоте. Во-первых, интегрированный в ядро tag для L2-кеша поддерживает его размеры от 512 Кбайт до 16 Мбайт. Pentium III, как известно, имеет внешнюю Tag-RAM, подерживающую только 512-килобайтный кеш второго уровня. К тому же, Athlon может использовать различные делители для скорости L2-кеша: 1:1, 1:2, 2:3 и 1:3. Такое разнообразие делителей позволяет AMD не зависеть от поставщиков SRAM определенной скорости, особенно при выпуске более быстрых моделей.
Благодаря возможности варьировать размеры и скорости кеша второго уровня AMD собирается выпускать четыре семейства процессоров Athlon, ориентированных на разные рынки.
Вот мы и подошли к рассказу о том, как же, собственно, работает Athlon. Как и процессоры от Intel с ядром, унаследованным от Pentium Pro, процессоры Athlon имеют внутреннюю RISC-архитектуру. Это означает, что все CISC-команды, обрабатываемые процессором, сначала раскладываются на простые RISC-операции, а потом только начинают обрабатываться в вычислительных устройствах CPU. Казалось бы, зачем усложнять себе жизнь? Оказывается, есть зачем. Сравнительно простые RISC-инструкции могут выполняться процессором по несколько штук одновременно и намного облегчают предсказание переходов, тем самым позволяя наращивать производительность за счет большего параллелизма. Говоря более просто, тот производитель, который сделает более "параллельный" процессор, имеет шанс добиться превосходства в производительности гораздо меньшими усилиями. AMD при проектировании Athlon, по-видимому, руководствовалась и этим принципом.