Смекни!
smekni.com

Процессоры (стр. 8 из 13)

4.2 миллионами транзисторов до 167 кв. мм и поднять процент выхода годных, а также тактовую частоту.

По мнению руководства AMD в 1996 году объем выпуска К5 бу­дет наращиваться достаточно быстро, что позволит отгрузить до конца года более пяти миллионов процессоров. Ответом на вызов Intel с ее процессором Pentium Pro может стать только процессор К6, но уже ник­то не верит, что его удастся увидеть раньше 1997 года. Hесмотря на всемирный переход на процессор Pentium, в следующем году еще могут сохраниться некоторые рынки для 486-х. Эксперты считают, что потреб­ность таких региональных рынков, как Китай, Индия, Россия, Восточ­ная Европа и Африка, в 486-х чипах составит до 20 миллионов процес­соров в 1996 году. AMD рассчитывает, что именно ей удастся поста­вить большую часть от этого количества. Поэтому компания повышает тактовую частоту 486-х до 133 Мгц, чтобы конкурировать с низшими версиями процессора Pentium в настольных ПК начального уровня. Одна­ко, AMD будет усиленно наращивать выпуск К5, поскольку 486-е быстро выходят из моды.

4.3. Процессоры NexGen.

В то время: как компания Intel готовила отрасль к шокирующе­му выходу в жизнь серийных моделей серверов и настольных машин на Pentium Pro, фирма NexGen представляла форуму свои планы по разра­ботке процессора Nx686. Этот суперскалярный х86-совместимый процес­сор, к разработке которого подключается еще и команда архитекторов из AMD, снятых с собственного неудачного проекта К6, будет содер­жать около 6 млн. транзисторов, включая вычислитель с плавающей точ­кой на одном кристалле с процессором (отказ от предыдущего двухкрис­талльного подхода, ослабившего Nx586). Технология КМОП с проектными нормами 0,35 мкм и пятислойной металлизацией позволила "упаковать" на одном кристалле семь исполнительных узлов: два для целочисленных, один для операций с плавающей точкой, по одному для обработки мультимедиа, команд переходов, команд загрузки и команд записи. По­казатели производительности представители NexGen назвать не смогли, но выразили предположение, что он превзойдет Pentium Pro на 16-раз­рядных программах вдвое, а на 32-битовых - на 33 %.

До сих пор мало что известно про Nx686, так как чип еще не анонсировался и NexGen не хочет раскрывать козыри перед конкурента­ми в лице AMD, Cyrix и Intel. Однако, NexGen не хочет раскрывать ко­зыри перед конкурентами в лице AMD, Cyrix и Intel. Однако, NexGen настаивает о том, что Nx686 по производительности сопоставим с инте­ловским Pentium Pro и AMD K5, и наследует микроархитектуру Nx586, появившуюся в 1994 году. NexGen называет ее RISC86. Базовая ее идея, как и в случае с Pentium Pro и K5, состоит в преобразовании сложных CISC-команд программного обеспечения x86 в RISC-подобные операции, исполняемые параллельно в процессорном ядре RISC-типа. Этот подход, известный под названием несвязанной микроархитектуры, позволяет обо­гатить CISC-процессор новейшими достижениями RISC-архитектур и сох­ранить совместимость с имеющимся ПО для х86.

В Nx686 эта философия продвинута на новый логический уро­вень. Сегодня в Nx586 имеется три исполнительных блока, трехконвей­ерное суперскалярное ядро. Он способен выполнять в каждом такте по одной команде х86. Возможности для совершенствования очевидны: Nx586 будет содержать пять исполнительных блоков, четыре конвейера и нес­колько декодеров, способных справиться с выполнением двух или даже более команд х86 за один машинный такт. Для этого потребуется встроить дополнительные регистры переименования и очереди команд.

Подход к использованию интегрированного кэш-контроллера и интерфейса для скоростной кэш-памяти остается неизменным. Представи­тели NexGen говорят, что они изучают возможность использования крис­талла вторичной кэш-памяти по образцу и подобию Intel, тем более что их производственный партнер IBM Microelectronics способен делать статическую память и многокристальные сборки (MCM - multichip modules).

Пример практической реализации технологии МСМ фирмы IBM представляет новая версия процессора Nx586, запланированная к выпус­ку на конец этого года и включающая кристалл CPU и FPU в одном кор­пусе. Одновременное перепроектирование топологии с масштабированием до размера линии 0.35 микрон позволит компании NexGen основательно уменьшить размеры кристалла ЦПУ - до 118 кв. мм - меньше в этом клас­се ничего нет.

NexGen, новичок в группе производителей процессоров х86. Nx596 может параллельно обрабатывать на нескольких исполнительных блоках до четырех простейших операций, которые названы командами RISC86. Процессор К5 имеет похожий четырехпоточный дешифратор, но результаты его работы компания называет R – ops.

4.4. Процессоры Cyrix.

Первая вещь из грандиозного проекта М1 компании Cyrix, нако­нец обнародована. Это процессор Сх 6х86-100, монстроподобный крис­талл которого сложен и очень дорог для того, чтобы претендовать на массовый выпуск в течении длительного срока. Его проблемы сможет ре­шить процессор, который пока имеет кодовое название M1rx и опираю­щийся на техно процесс с пятислойной металлизацией, идущий на смену трехслойной версии той же 0.6-мкм технологии. Если проект увенчает­ся успехом, то размер кристалла с 394 кв. мм уменьшится до 225 кв. мм, тогда у Cyrix появится шанс поднять тактовую частоту до 120 МГц. В этом случае эксперты предсказывают ему производительность в преде­лах 176-203 по тесту SPECint92, т.е. на уровне процессора Pentium 133 (SPECint92=190.9) или 150 МГц. Если все обещания сбудутся, то Cyrix сможет продать столько процессоров, сколько произведет. Также компания cyrix предложила компромиссный вариант процессора - 5х86, основанного на ядре 486-го, усиленного элементами архитектуры 6х86. Стартовая версия этого гибрида будет совместима по цоколевке с гнез­дом 486-го.

4.5. Процессоры Sun Microsystems.

Sun Microsystems процессор UltraSparc-II. Впервые вводя RISC-технологию, SUN в 1988 году объявила SPARC в качестве масштаби­руемой архитектуры, с запасом на будущее. Однако, с 1993 года реали­зация SuperSparc стала на шаг отставать от своих конкурентов.

С появлением UltraSparc, четвертого поколения архитектуры SPARC, компания связывает надежды на восстановление утраченных позиций. Он содержит ни много, ни мало, но девять исполнительных блоков: два целочисленных АЛУ, пять блоков вычислений с плавающей точкой (два для сложения, два для умножения и одно для деления и извлече­ния квадратного корня), блок предсказания адреса перехода и блок загрузки/записи. UltraSparc содержит блок обработки переходов, встроенный в первичную кэш команд, и условно выполняет предсказан­ные переходы, но не может выдавать команды с нарушением их очеред­ности. Эта функция перекладывается на оптимизирующие компиляторы.

Архитектура SPARC всегда имела регистровые окна, т.е. во­семь перекрывающихся банков по 24 двойных регистра, которые могут предотвратить остановки процессора в моменты комплексного переключе­ния, связанные с интенсивными записями в память. Разработчики компи­ляторов склонны считать эти окна недостаточным решением, поэтому в UltraSparc используется иерархическая система несвязанных шин. Шина данных разрядностью 128 бит работает на одной скорости с ядром про­цессора. Она соединяется через буферные микросхемы с 128-разрядной системной шиной, работающей на частоте, составляющей половину, треть или четверть скорости процессорного ядра. Для согласования с более "медленной" периферией служит шина ввода-вывода Sbus.

Фирма Sun реализует эту схему на аппаратном уровне с по­мощью коммутационной микросхемы, являющейся составной частью схемно­го комплекта окружения. Эта микросхема может изолировать шину памя­ти от шины ввода-вывода, так что ЦПУ продолжает, например, запись в графическую подсистему или в иное устройство ввода-вывода, а не ос­танавливается во время чтения ОЗУ. Такая схема гарантирует полное использование ресурсов шины и установившуюся пропускную способность

1.3 Гигабайт/с.

В процессоре UltraSparc – II используется система команд Visual Instruction Set (VIS), включающая 30 новых команд для обра­ботки данных мультимедиа, графики, обработки изображений и других целочисленных алгоритмов. Команды VIS включают операции сложения, вычитания и умножения, которые позволяют выполнять до восьми опера­ций над целыми длинной байт параллельно с операцией загрузки или за­писи в память и с операцией перехода за один такт. Такой подход мо­жет повысить видеопроизводительность систем.

4.6. Процессоры Digital Equipment.

Digital Equipment процессор Alpha наиболее тесно следует в русле RISC-философии по сравнению со своими конкурентами, "посрезав излишки сала" с аппаратуры и системы команд с целью максимального спрямления маршрута прохождения данных. Разработчики Alpha уверены, что очень высокая частота чипа даст вам большие преимущества, чем причудливые аппаратные излишества. Их принцип сработал: кристалл 21164 был самым быстрым в мире процессором со дня своего появления в 1995 году. Процессор 21164 в три раза быстрее на целочисленных вы­числениях, чем Pentium-100, и превосходит на обработке числе с пла­вающей точкой, чем суперкомпьютерный набор микросхем R8000 фирмы Mips. Топология процессора следующего поколения 21164А не измени­лась, но она смаштабирована, кроме того, модернизирован компилятор, что повысило производительность на тестах SPECmarks. Предполагается, что готовые образцы нового процессора, изготовленные по КМОП - техно­логии с нормами 0.35 микрон, при тактовой частоте свыше 300 МГц бу­дут иметь производительность 500 по SPECint92 и 700 по SPECfp92.

Процессоры семейства 21164 на прибегают к преимуществам ис­полнения не в порядке очередности (out – of – order), больше полагаясь на интеллектуальные компиляторы, которые могут генерировать коды, сводящие к минимуму простои конвейера. Это самый гигантский процес­сор в мире - на одном кристалле размещено 9.3 миллиона транзисторов, большая часть которых пошла на ячейки кэш-памяти. Alpha 21164 имеет на кристалле относительно небольшую первичную кэш прямого отображе­ния на 8 Кбайт и 96 Кбайт вторичной. За счет вздувания площади крис­талла достигнута беспрецедентная производительность кэширования.