Шинные сети чувствительны к заземлению КС и к подаче на него избыточного по уровню сигнала (электрический разряд, случайное замыкание на посторонние линии питания), поэтому в приемопередатчике шинной сети необходима электрическая (трансформаторная или оптическая) развязка его абонентской и канальной частей.
Пропускная способность и задержка в шинных сетях определяются большим числом параметров: методом доступа, полосой пропускания ЛС, числом узлов сети, длиной сообщений и др.
Расширение ЛВС
Увеличение участка, охватываемого сетью, вызывает необходимость ее расширения. В сети с топологией «шина» кабель обычно удлиняется двумя способами.
1. Для соединения двух отрезков кабеля можно воспользоваться баррел-коннектором (barrel connector).
Но злоупотреблять ими не стоит, так как сигнал при этом ослабевает. Лучше купить один длинный кабель, чем соединять несколько коротких отрезков. При большом количестве «стыковок» нередко происходит искажение сигнала.
2. Для соединения двух отрезков кабеля служит репитер (repeater). В отличие от коннектора, он усиливает сигнал перед передачей его в следующий сегмент. Поэтому предпочтительнее использовать репитер, чем баррел-коннектор или даже один длинный кабель: сигналы на большие расстояния пойдут без искажений.
Рис. Репитер соединяет отрезки кабеля и усиливает сигнал.
Преимущества и недостатки такой топологии очевидны.
Преимущества:
· минимальная длина ЛС;
· легко расширяется;
· высокая скорость обмена данными между пользователями (нет дополнительных задержек на прохождение сигналов через узлы, как это имеет место в кольцевой топологии);
· шина пассивная топология. Это означает, что компьютеры только «прослушивают» передаваемые по сети данные, но не продвигают их от отправителя к получателю. Поэтому если один из компьютеров выходит из строя, это не сказывается на работе остальных. В активных топологиях происходит регенерация сигналов в компьютерах и последующая их передача в сеть.
Недостатки:
· низкая надежность (разрыв ЛС нарушает связь между станциями); при неисправности станции, проявляющейся в том, станция начинает непрерывную передачу, сеть также становится неработоспособной;
· трудность локализации отказов с точностью до отдельного компонента, подключенного к шине;
· разрыв кабеля или отсоединение одного из концов приводит к прекращению функционирования сети (Сеть «падает»);
· если разделение каналов производится не по частоте, а по времени, то всегда имеется задержка между моментом появления данных для передачи и моментом времени, когда эти данные могут быть переданы. Причем эта задержка при большом количестве станций и длинных сообщениях может достигать значительных величин. В этом случае, для управления в реальном масштабе времени необходимо либо увеличивать скорость передачи данных, что может потребовать больших затрат, либо ограничивать длину пакетов, которыми обмениваются станции.
Для оптоволоконных ЛС достижение полной связности типа «станция-станция» шинная реализация сети требует двух шин. Это объясняется однонаправленным характером оптоволоконного канала. Чаще всего используются две отдельные встречно направленные шины.
Топология сети Fasnet.
Здесь станции имеют доступ к каждой оптоволоконной шине через соответствующий отвод чтения, за которым размещается отвод записи. Шины между собой не связаны. Первая и последняя станция наряду с функциями контороллеров сети выполняют функции трансляции пакетов.
Как альтернативный вариант можно применять конфигурацию, использующую единственную U- или D-образную оптоволоконную шину
Топология D-сети
В этом случае станция подключается с помощью отводов записи на исходящей стороне и с помощью отвода приема на входящей стороне шины. В этом случае станция, являющейся последней на передачу оказывается первой на прием, что не всегда удобно. Этого недостатка лишена S-шина
Топология сети Expressnet
Повышение надежности шинных сетей ПД достигается за счет прокладывания дополнительных ЛС. Чаще всего в СУРО используются дублирующие каналы. В некоторых систем управления может использоваться несколько дополнительных ЛС. Например в самолетостроении, в бортовых системах информационного обмена используются триплированная шина, идущая вдоль одного борта, и дублирующая ее триплированная шина — вдоль другого борта.
Если СУРО содержит ПУ и КП, рассредоточенные по некоторой территории, то в этом случае шинная топология сети ПД практически не используется, а применяются оставшиеся из выше перечисленных топологий и, в частности, радиальная топология.
Радиальная топология (Звездообразная топология, топология «звезда»), при которой каждая станция подсоединена одним или двумя выделенными КС к единственному центральному узлу, именуемому концентратором (hub). Станция может непосредственно осуществлять доступ только к этому узлу. В сетях с такой топологией через центральный узел проходит весь сетевой трафик.
Эта топология одна из наиболее широко распространенных структур сетей ПД. Она широко использовалась в 60-х -70-х годах, поскольку благодаря легкости управления ПО было не сложным, а поток трафика простым. Весь трафик исходит из центрального узла звезды, который представлял из себя главную ЭВМ, а остальные узлы являлись терминалами.
Концентраторы
В настоящее время одним из стандартных компонентов сетей становится концентратор. А в сетях с топологией «звезда» он служит центральным узлом.
Среди концентраторов выделяются активные (active) и пассивные (passive).
Активные концентраторы. Активные концентраторы регенерируют и передают сигналы так же, как это делают репитеры. Иногда их называют многопортовыми репитерами — они обычно имеют от 8 до 12 портов для подключения компьютеров.
Пассивные концентраторы. Некоторые типы концентраторов являются пассивными, например монтажные панели или коммутирующие блоки. Они просто пропускают через себя сигнал как узлы коммутации, не усиливая и не восстанавливая его. Пассивные концентраторы не надо подключать к источнику питания.
Гибридные концентраторы. Гибридными (hybrid) называются концентраторы, к которым можно подключать кабели различных типов. Сети, построенные на концентраторах, легко расширить, если подключить дополнительные концентраторы.
Концентраторы работают на первом уровне.
Рис. Гибридный концентратор
В настоящее время различают:
1. звездообразную сеть с коммутацией, когда центральный узел отвечает за маршрутизацию и выполняет функции пересылки с промежуточным хранением или коммутационные функции без промежуточного хранения. В последнем случае сети строятся на базе метода коммутации каналов. Когда перед началом передачи вызывающая станция запрашивает у центрального узла установление физического или логического соединения с вызываемой станцией (узлом). После установления соединения соответствующий физический или логический путь монопольно используется абонентами-партнерами для обмена данными. По окончании обмена один из абонентов запрашивает у центрального узла разъединения.
2. широковещательную звездообразная сеть, предусматривающую использование центрального узла как безбуферного повторителя, который направляет все приходящие сигналы во все исходящие из него линии.
Центральный узел производит локализацию неисправностей, которая в данном случае оказывается простой, поскольку сводится к локализации отдельной радиальной связи (канал или оконечный узел). При необходимости дефектная радиальная связь отключается не нарушая функционирования остальной части сети.
Преимущества топологии:
· разрыв кабеля в сети с обычной топологией «линейная шина» приведет к «падению» всей сети. Разрыв кабеля, подключенного к концентратору, нарушит работу только данного сегмента. Остальные сегменты останутся работоспособными.
· простота изменения или расширения сети: достаточно просто подключить еще один компьютер или концентратор;
· использование различных портов для подключения кабелей разных типов:
· централизованный контроль за работой сети и сетевым трафиком: во многих сетях активные концентраторы наделены диагностическими возможностями, позволяющими определить работоспособность соединения;
· централизованное управление.
В тоже время центральный узел является слабым местом такой сети.