Теорема 7.17. Если А - централизованный волновой алгоритм, использующий М сообщений на одну волну, алгоритм Ex(A), выбирает лидера использую не более NM сообщений.
Доказательство. Пусть p0 самый маленький инициатор. К волне, начатой p0 немедленно присоединяются все процессы, которые получают сообщение этой волны, и каждый процесс заканчивает эту волну, потому что нет волны с меньшим идентификатором, для которой процесс прервал бы выполнение волны p0. Следовательно, волна p0 бежит к завершению, решение будет иметь место, и p0 становится лидером.
Если p не инициатор, никакая волна с идентификатором p не начнется, следовательно p не станет лидером. Если p ¹ p0 - инициатор, волна с идентификатором p будет начата, но решению в этой волне будет предшествовать событие посылки от p0 (для этой волны) , или имееть место в p0 (Lemma 6.4). Так как p0 никогда не выполняет событие посылки или внутреннее событие волны с идентификатором p, такое решение не имеет место, и p не избран.
Не более N волн начаты, и каждая волна использует по крайней мере М сообщений, что приводит к полной сложности к NM. -
Более тонким вопросом является оценка сложности по времени алгоритма Ex(A). Во многих случаях это будет величина того же порядока , что и сложность по времени алгоритма A, но в некоторых неудачных случаях, может случиться, что инициатор с самым маленьким идентификатором начинает волну очень поздно. В общем случае можно показать сложность по времени O (Nt) (где t - сложность по времени волнового алгоритма ), потому что в пределах t единиц времени после того, как инициатор p начинает волну, волна p приходит к решению или начинается другая волна.
Если вырождение применяется к кольцевому алгоритму, получаем алгоритм Chang-Poberts; см. Упражнение 7.9. Алгоритм 7.9 является алгоритмом выбора полученным из алгоритма эха. Чтобы упростить описание, принимается что udef > q для всех qÎ P. При исследовании кода, читатель должен обратить внимание, что после получения сообщения átok, rñ с r < cawpp, оператор If с условием r = cawp также выполняется, вследствие более раннего присваивания cawp. Когда выбирается процесс p (получает átok, pñ от каждого соседа), p посылает сообщение áldr, pñ всем процессам, сообщая им, что p - лидер и заставляя их закончить алгоритм.
7.3.2 Алгоритм Gallager-Humblet-Spira
Проблема выбора в произвольных сетях тесно связана с проблемой вычисления дерева охватов с децентрализованным алгоритмом, как выдно из следующего рассуждения. Пусть CE сложность по сообщениям проблемы выбора и CТ сложность вычисления дерева охватов. Теорема 7.2 подразумевает, что CE£CT+O(N), и если лидер доступен, дерево охватов, может быть вычислено используя 2½E½ сообщений в алгоритме эха, который подразумевает что CT£ CE + 2½E½. Нижняя граница CE (теорема 7.15) подразумевает, что две проблемы имеют одинаковый порядок сдожности, а именно, что они требуют по крайней мере Ω(N log N + E) сообщений.
Этот подраздел представляет Gallager-Humblet-Spira (GHS), алгоритм для вычисления (минимального) дерева охватов, используя 2½E½ + 5N log N сообщений. Это показывает, что CE и CТ величины порядка q (N log N + E). Этот алгоритм был опубликован в [GHS83]. Алгоритм может быть легко изменен (как будет показано в конце этого подраздела) чтобы выбрать лидера в ходе вычисления, так, чтобы отдельный выбор как показано в выше не был необходим.
GHS алгоритм полагается на следующие предположения.
(1) Каждое ребро e имеет уникальный вес w (e). Предположим здесь, что w (e) - реальное число, но целые числа также возможны как веса ребер.
Если уникальные веса ребер не доступны априоре, каждому краю можно давать вес, который сформирован из меньшего из двух первых идентификаторов узлов, связанных с ребром. Вычисление веса края таким образом требует, чтобы узел знал идентификаторы соседей, что требует дополнительно 2½E½ сообщений при инициализации алгоритма.
(2) Все узлы первоначально находятся в спящем состоянии и просыпаются прежде, чем они начинают выполнение алгоритма. Некоторые узлы просыпаются спонтанно (если выполнение алгоритма вызвано обстоятельствами, встречающимися в этих узлах), другие могут получать сообщение алгоритма, в то время как они все еще спят. В последнем случае узел получающий сообщение сначала выполняет локалбную процедуру инициализации, а затем обрабатывает сообщение.
Минимальное дерево охватов. Пусть G = (V, E) взвешенный граф, где w {e) обозначает вес ребра e. Вес дерева охватов T графа G равняется сумме весов N-1 ребер, содержащихся в T, и T называется минимальным деревом охватов, или MST, (иногда минимальным по весу охватывающим деревом) если никакое дерево не имеет меньший вес чем T. В этом подразделе предполагаем, что каждое ребро имеет уникальный вес, то есть, различные ребра имеют различные веса, и это - известный факт что в этом случае имеется уникальное минимальное дерево охватов.
Утверждение 7.18 Если все веса ребер различны, то существует только одно MST.
Доказательство. Предположим обратное, т.е. что T1 и T2 (где T1 ¹ T2) - минимальные деревья охватов. Пусть e ребро с самым маленьким весом, который находится в одном из деревьев, но не в обоих; такой край существует потому что T1 ¹ T2. Предположим, без потери общности, что e находится в T1, но не в T2. Граф T2 È {e} содержит цикл, и поскольку T1 не содержит никакой цикл, по крайней мере одно ребро цикла, скажем e', не принадлежит T1. Выбор e подразумевает что w (e) < w (e '), но тогда дерево T2 È {e} \ {e '} имеет меньший вес чем T2, который противоречит тому, что T2 - MST. -
Утверждение 7.18 - важное средство распределенного построения минимального дерева охватов, потому что не нужно делать выбор(распределенно) из множества законных ответов. Напротив каждый узел, который локально выбирает ребра, которые принадлежат любому минимальному дереву охватов таким образом, вносит вклад в строительство глобально уникального MST.
Все алгоритмы, для вычисления минимальное дерево охватов основаны на понятии фрагмента, который является поддеревом MST. Ребро e - исходящее ребро фрагмента F, если один конец e находится в F, и другой - нет. Алгоритмы начинают с фрагментов, состоящих из единственного узла и увеличивают фрагменты, пока MST не полон, полагаясь на следующее наблюдение.
Утверждение 7.19 Если F - фрагмент и e - наименьшее по весу исходящее ребро F, то F È {e} - фрагмент
Доказательство. Предположите, что F È {e} - не часть MST; тогда е формирует цикл с некоторыми ребрами MST, и одно из ребер MST в этом цикле, скажем f, - исходящее ребро F. Из выбора e - w (e) < w (f), но тогда удаляя f из MST и вставляя e получим дерево с меньшим весом чем MST, что является противоречием. -
Известные последовательные алгоритмы для вычисления MST - алгоритмы Prim и Kruskal. Алгоритм Prim [CLR90, Раздел 24.2] начинается с одного фрагмента и увеличивает его на каждом шаге включая исходящее ребротекущего фрагмента с наименьшим весом. Алгоритм Kruskal [CLR90, Раздел 24.2] начинается с множества фрагментов, состоящих из одного узла, и сливает фрагменты, добавляя исходящее ребро некоторого фрагмента с наименьшим весом . Т.к. алгоритм Kruskal позволяет нескольким фрагментам действовать независимо, он более подходит для выполнения в распределенном алгоритме.
7.3.3 Глобальное Описание GHS Алгоритма.
Сначала мы опишем как алгоритм работает глобальным способом, то есть, с точки зрения фрагмента. Тогда мы опишем локальный алгоритм, который должен выполнить каждый узел, чтобы получить это глобальное преобразование фрагментов.
Вычисление GHS алгоритма происходит согласно следующим шагам.
(1) Множество фрагментов поддерживается таким, что объединение всех фрагментов содержит все вершины.
(2) Первоначально это множество содержит каждый узел как фрагмент из одного узла.
(3) Узлы во фрагменте сотрудничают, чтобы найти исходящее ребро фрагмента с минимальным весом .
(4) Когда исходящее ребро фрагмента с наименьшим весом известно, фрагмент объединяется с другим фрагментом добавлением исходящего ребра, вместе с другим фрагментом.
(5) Алгоритм заканчивается, когда остается только один фрагмент.
Эффективное выполнение этих шагов требует представления некоторого примечания и механизмов.
(1) Имя фрагмента. Чтобы определить исходящее ребро с наименьшим весом , нужно видеть,является ли ребро исходящим или ведет к узлу в том же самом фрагменте. Для этого каждый фрагмент будет иметь имя, которое будет известно процессам в этом фрагменте. Процесс проверяет является ли ребро внутренним или исходящим сравненивая имена фрагментов.
(2) Объединение больших и маленьких фрагментов. Когда объединяются два фрагмента, имя фрагмента изменяется по крайней мере в одном из фрагментов, что требует произвести изменения в каждом узле по крайней мере одного из двух фрагментов. Чтобы это изменение было эффективным, стратегия объединения основана на идеи, согласно которой меньший из двух фрагментов объединяется в больший из двух, принимая имя фрагмента большего фрагмента.
(3) Уровни фрагментов. Небольшое размышление показывает, что решение, кто из двух фрагментов является большим, не должно зависить от числа узлов в двух фрагментах. Для этого необходимо изменять размер фрагмента в каждом процессе, и большего и меньшего фрагментов, таким образом портя желательную свойство, что изменение необходимо только в меньшем. Вместо этого, каждому фрагменту назначен уровень, который является 0 для начального фрагмента с одним узлам. Это позволяется, что фрагмент F1 объединяется во фрагмент F2 с более высоким уровнем, после чего новый фрагмент F1 È F2 имеет уровень F2. Новый фрагмент также имеет имя фрагмента F2, так что никакие изменения не для узлов в F2 не требуются. Такое объединение также возможно для двух фрагментов одинакового уровня; в этом случае новый фрагмент имеет новое имя, и уровень - на единицу выше чем уровень объединяющихся фрагментов. Новое имя фрагмента - вес ребра, которым объединены два фрагмента, и этот ребро называется основным ребром нового фрагмента. Два узла, связанные основным ребром называются основными узлами.