a21a + a22b + a23c = b2
a31a + a32b + a33c = b3
где a11 =
, a12 = a21 = , a13 = a22 = a31 = , a23 = a32 = xi , a33 = n + 1b1 =
yi , b2 = xi yi , b3 = yi .2.2. РУЧНОЙ РАСЧЁТ КОЭФФИЦИЕНТОВ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ
Рассчитаем коэффициенты системы трёх линейных уравнений по формулам, взятым из п.2.2.:
а11 = 0.74 + 0.84 + 0.94 + 1.04 + 1.14 + 1.24 + 1.34 + 1.44 + 1.54 + 1.64 + 1.74 = 32.5094
а12 = а21 = 0.73 + 0.83 + 0.93 + 1.03 + 1.13 + 1.23 + 1.33 + 1.43 + 1.53 + 1.63 + 1.73 = 22.9680
а13 = а22 = а31 = 0.72 + 0.82 + 0.92 + 1.02 + 1.12 + 1.22 + 1.32 +1.42+1.52+1.62+1.72 = 16.9400
а23 = а32 = 0.7 + 0.8 + 0.9 + 1 + 1.1 + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 = 13.2000
а33 = n + 1 = 11
b1 = 2.1 * 0.72 + 2.09763 * 0.82 + 2.105547 * 0.92 + 2.125049 * 1.02 + 2.157721 * 1.12 + 2.205613 * 1.22 + 2.271475 * 1.32 + 2.359045 * 1.42 + 2.473328 * 1.52 + 2.620626 * 1.62 + 2.807662 * 1.72 = 40.83941
b2 = 2.1 * 0.7 + 2.09763 * 0.8 + 2.105547 * 0.9 + 2.125049 * 1.0 + 2.157721 * 1.1 + 2.205613 * 1.2 + 2.271475 * 1.3 + 2.359045 * 1.4 + 2.473328 * 1.5 + 2.620626 * 1.6 + 2.807662 * 1.7 = 31.119972
b3 = 2.1 + 2.09763 + 2.105547 + 2.125049 + 2.157721 + 2.205613 + 2.271475 + 2.359045 + 2.473328 + 2.620626 + 2.807662 = 25.3237
Получим систему уравнений:
32.5094a + 22.968b + 16.94c = 40.83941
22.968a + 16.94b + 13.2c = 31.119972
16.94a + 13.2b + 11c = 25.3237
Теперь нужно решить эту систему методом Гаусса и найти коэффициенты a,b,c.
3. РЕШЕНИЕ СИСТЕМЫ УРАВНЕНИЙ МЕТОДОМ ГАУССА
Суть этого метода состоит в том, что систему линейных уравнений преобразуют к системе с треугольной матрицей, а потом решают уравнения, начиная с последнего.
Решим систему уравнений, полученную в п. 2.2.:
Первое уравнение считается основным, его мы не изменяем. Второе уравнение нужно преобразовать так, чтобы первый его коэффициент стал равен нулю. Для этого второе уравнение нужно умножить на такой множитель, чтобы первые коэффициенты первого и второго уравнения стали равны.
Найдём множитель:
μ21 = а21 / а11 = 22.968 / 32.5094 = 0.7065
Умножим на него первое уравнение:
32.5094a * 0.7065 + 22.968b * 0.7065 + 16.94 * 0.7065 = 40.83941 * 0.7065
Получим:
22.968a + 16.2269b + 11.9681c = 28.853043
Теперь нужно это уравнение почленно вычесть из второго:
0a + 0.7131b + 1.2319c = 2.266929
Аналогично преобразуем третье уравнение:
i31 = a31 / a11 = 16.94 / 32.5094 = 0.5211
32.5094a * 0.5211 + 22.968b * 0.5211 + 16.94c * 0.5211 = 40.83941 * 0.5211
16.94a + 11.9686b + 8.8274c = 21.281416
Вычтем это уравнение из третьего, получим:
0a +1.2314b + 2.1726c = 4.042284
Таким образом, получится система, эквивалентная исходной:
32.5094a + 22.968b + 16.94c = 40.83941
0.7131b + 1.2319c = 2.266929
1.2314b + 2.1726c = 4.042284
Третье уравнение нужно преобразовать так, чтобы второй его коэффициент стал равен нулю. Найдём множитель:
μ32 = a32 / a22 = 1.2314 / 0.7131 = 1.7268
Умножим второе уравнение на него:
0.7131b * 1.7268 + 1.2319c * 1.7268 = 2.266929 * 1.7268
1.2314b + 2.1272c = 3.914533
Вычтем получившееся уравнение из третьего:
0b + 0.0454c = 0.127751
Получим треугольную матрицу, эквивалентную исходной:
32.5094a + 22.968b + 16.94c = 40.83941
0.7131b + 1.2319c = 2.266929
0.0454c = 0.127751
Теперь найдём коэффициенты:
c = 0.127751 / 0.0454 = 2.813899
b = (2.266929 - 1.2319 * 2.813899) / 0.7131 = - 1.682111
a = (40.83941 - 16.94 * 2.813899 - 22.968 * (- 1.682111) ) / 32.5094 = 0.978384
Проверим результаты вычислений, подставив полученные значения корней в исходную систему:
32.5094 * 0.978384 + 22.968 * (- 1.682111) + 16.94 * 2.813899 = 40.83941
22.968 * 0.978384 + 16.94 * (- 1.682111) + 13.2 * 2.813899 = 31.119972
16.94 * 0.978384 + 13.2 * (- 1.682111) + 11 * 2.813899 = 25.3237
40.8394 » 40.83941
31.12 » 31.119972
25.3228 » 25.3237
Таким образом, уравнение аппроксимирующей параболы имеет вид:
F (x) = 0.978384x2 - 1.682111x + 2.813899
4. НАХОЖДЕНИЕ ЗНАЧЕНИЙ АППРОКСИМИРУЮЩЕЙ ФУНКЦИИ
Найдём значения функции F(x) = 0.978384 x2 - 1.682111 x + 2.813899
на интервале [0.7; 1.7] с шагом h=0.1
x0 = 0.7
F( x0 ) = 0.978384 * 0.72 - 1.682111 * 0.7 + 2.813899 = 2.118622
x1 = x0 + h = 0.7 + 0.1 = 0.8
F( x1 ) = 0.978384 * 0.82 - 1.682111 * 0.8 + 2.813899 = 2.095734
x2 = 0.8 + 0.1 = 0.9
F( x2 ) = 0.978384 * 0.92 - 1.682111 * 0.9 + 2.813899 = 2.092711
x3 = 0.9 + 0.1 = 1.0
F( x3 ) = 0.978384 * 1.02 - 1.682111 * 1.0 + 2.813899 = 2.109553
x4 = 1.0 + 0.1 = 1.1
F( x4 ) = 0.978384 * 1.12 - 1.682111 * 1.1 + 2.813899 = 2.14626
x5 = 1.1 + 0.1 = 1.2
F( x5 ) = 0.978384 * 1.22 - 1.682111 * 1.2 + 2.813899 = 2.202831
x6 = 1.2 + 0.1 = 1.3
F( x6 ) = 0.978384 * 1.32 -1.682111 * 1.3 + 2.813899 = 2.279266
x7 = 1.3 + 0.1 = 1.4
F( x7 ) = 0.978384 * 1.42 - 1.682111 * 1.4 + 2.813899 = 2.375567
x8 = 1.4 + 0.1 = 1.5
F( x8 ) = 0.978384 * 1.52 - 1.682111 * 1.5 + 2.813899 = 2.491732
x9 = 1.5 + 0.1 = 1.6
F( x9 ) = 0.978384 * 1.62 - 1.682111 * 1.6 + 2.813899 = 2.627762
x10 = 1.6 + 0.1 = 1.7
F( x10 ) = 0.978384 * 1.72 - 1.682111 * 1.7 + 2.813899= 2.783656
5. РАСЧЕТ ПОГРЕШНОСТИ АПРОКСИМАЦИИ.
Для вычисления погрешности аппроксимации вычислим величину среднеквадратичного отклонения:
Здесь yi - значения решения дифференциального уравнения, полученные в п.1.2. (см. Таблицу 1), F(xi) - значения аппроксимирующей функции при тех же значениях xi, полученные в п. 4. Их разность показывает величину отклонения аппроксимирующей функции от аппроксимируемой в узлах xi.
Рассчитаем погрешность аппроксимации:
0 = F( x0 ) - y0 = 2.118622 - 2.1 = 0.018622 02 = 3.46779 * 10 - 4 1 = F( x1 ) - y1 = 2.095734 - 2.09763 = - 0.001896 12 = 3.59482 *10 - 6 2 = F( x2 ) - y2 = 2.092711 - 2.105547 = - 0.012836 22 = 1.64763 * 10 - 4 3 = F( x3 ) - y3 = 2.109553 - 2.125049 = - 0.015496 32 = 2.40126 * 10 - 4 4 = F( x4 ) - y4 = 2.14626 - 2.157721 = - 0.011461 42 = 1.31355 * 10 - 4 5 = F( x5 ) - y5 = 2.202831 - 2.205613 = - 0.002782 52 = 7.73953 * 10 - 6 6 = F( x6 ) - y6 = 2.279266 - 2.271475 = 0.007791 62 = 6.06997 * 10 - 5 7 = F( x7 ) - y7 = 2.375567 - 2.359045 = 0.06522 72 = 2.72977 * 10 - 4 8 = F( x8 ) - y8 = 2.491732 - 2.473328 = 0.08404 82 = 3.38707 * 10 - 4 9 = F( x9 ) - y9 = 2.627762 - 2.620626 = 0.007136 92 = 5.09225 * 10 - 5 10 = F( x10 ) - y10 = 2.783656 - 2.807662 = - 0.024006 102 = 5.76288 * 10 -4 I | xi | yi | F(xi) | i | i2 |
0 | 0.7 | 2.1 | 2.118622 | 0.018622 | 3.46779 * 10 - 4 |
1 | 0.8 | 2.09763 | 2.095734 | - 0.001896 | 3.59482 * 10 - 6 |
2 | 0.9 | 2.105547 | 2.092711 | - 0.012836 | 1.64763 * 10 - 4 |
3 | 1.0 | 2.125049 | 2.109553 | - 0.015496 | 2.40126 * 10 - 4 |
4 | 1.1 | 2.157721 | 2.14626 | - 0.011461 | 1.31355 * 10 - 4 |
5 | 1.2 | 2.205613 | 2.202831 | - 0.002782 | 7.73953 * 10 - 6 |
6 | 1.3 | 2.271475 | 2.279266 | 0.007791 | 6.06997 * 10 - 5 |
7 | 1.4 | 2.359045 | 2.375567 | 0.06522 | 2.72977 * 10 - 4 |
8 | 1.5 | 2.473328 | 2.491732 | 0.08404 | 3.38707 * 10 - 4 |
9 | 1.6 | 2.620626 | 2.627762 | 0.007136 | 5.09225 * 10 - 5 |
10 | 1.7 | 2.807662 | 2.783656 | - 0.024006 | 5.76288 * 10 - 4 |
График погрешности аппроксимации представлен на рисунке 4.