Смекни!
smekni.com

Решение дифференциального уравнения с последующей аппроксимацией (стр. 2 из 3)

a21a + a22b + a23c = b2

a31a + a32b + a33c = b3

где a11 =

, a12 = a21 =
, a13 = a22 = a31 =
, a23 = a32 =
xi , a33 = n + 1

b1 =

yi , b2 =
xi yi , b3 =
yi .

2.2. РУЧНОЙ РАСЧЁТ КОЭФФИЦИЕНТОВ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Рассчитаем коэффициенты системы трёх линейных уравнений по формулам, взятым из п.2.2.:

а11 = 0.74 + 0.84 + 0.94 + 1.04 + 1.14 + 1.24 + 1.34 + 1.44 + 1.54 + 1.64 + 1.74 = 32.5094

а12 = а21 = 0.73 + 0.83 + 0.93 + 1.03 + 1.13 + 1.23 + 1.33 + 1.43 + 1.53 + 1.63 + 1.73 = 22.9680

а13 = а22 = а31 = 0.72 + 0.82 + 0.92 + 1.02 + 1.12 + 1.22 + 1.32 +1.42+1.52+1.62+1.72 = 16.9400

а23 = а32 = 0.7 + 0.8 + 0.9 + 1 + 1.1 + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 = 13.2000

а33 = n + 1 = 11

b1 = 2.1 * 0.72 + 2.09763 * 0.82 + 2.105547 * 0.92 + 2.125049 * 1.02 + 2.157721 * 1.12 + 2.205613 * 1.22 + 2.271475 * 1.32 + 2.359045 * 1.42 + 2.473328 * 1.52 + 2.620626 * 1.62 + 2.807662 * 1.72 = 40.83941

b2 = 2.1 * 0.7 + 2.09763 * 0.8 + 2.105547 * 0.9 + 2.125049 * 1.0 + 2.157721 * 1.1 + 2.205613 * 1.2 + 2.271475 * 1.3 + 2.359045 * 1.4 + 2.473328 * 1.5 + 2.620626 * 1.6 + 2.807662 * 1.7 = 31.119972

b3 = 2.1 + 2.09763 + 2.105547 + 2.125049 + 2.157721 + 2.205613 + 2.271475 + 2.359045 + 2.473328 + 2.620626 + 2.807662 = 25.3237

Получим систему уравнений:

32.5094a + 22.968b + 16.94c = 40.83941

22.968a + 16.94b + 13.2c = 31.119972

16.94a + 13.2b + 11c = 25.3237

Теперь нужно решить эту систему методом Гаусса и найти коэффициенты a,b,c.

3. РЕШЕНИЕ СИСТЕМЫ УРАВНЕНИЙ МЕТОДОМ ГАУССА

Суть этого метода состоит в том, что систему линейных уравнений преобразуют к системе с треугольной матрицей, а потом решают уравнения, начиная с последнего.

Решим систему уравнений, полученную в п. 2.2.:

Первое уравнение считается основным, его мы не изменяем. Второе уравнение нужно преобразовать так, чтобы первый его коэффициент стал равен нулю. Для этого второе уравнение нужно умножить на такой множитель, чтобы первые коэффициенты первого и второго уравнения стали равны.

Найдём множитель:

μ21 = а21 / а11 = 22.968 / 32.5094 = 0.7065

Умножим на него первое уравнение:

32.5094a * 0.7065 + 22.968b * 0.7065 + 16.94 * 0.7065 = 40.83941 * 0.7065

Получим:

22.968a + 16.2269b + 11.9681c = 28.853043

Теперь нужно это уравнение почленно вычесть из второго:

0a + 0.7131b + 1.2319c = 2.266929

Аналогично преобразуем третье уравнение:

i31 = a31 / a11 = 16.94 / 32.5094 = 0.5211

32.5094a * 0.5211 + 22.968b * 0.5211 + 16.94c * 0.5211 = 40.83941 * 0.5211

16.94a + 11.9686b + 8.8274c = 21.281416

Вычтем это уравнение из третьего, получим:

0a +1.2314b + 2.1726c = 4.042284

Таким образом, получится система, эквивалентная исходной:

32.5094a + 22.968b + 16.94c = 40.83941

0.7131b + 1.2319c = 2.266929

1.2314b + 2.1726c = 4.042284

Третье уравнение нужно преобразовать так, чтобы второй его коэффициент стал равен нулю. Найдём множитель:

μ32 = a32 / a22 = 1.2314 / 0.7131 = 1.7268

Умножим второе уравнение на него:

0.7131b * 1.7268 + 1.2319c * 1.7268 = 2.266929 * 1.7268

1.2314b + 2.1272c = 3.914533

Вычтем получившееся уравнение из третьего:

0b + 0.0454c = 0.127751

Получим треугольную матрицу, эквивалентную исходной:

32.5094a + 22.968b + 16.94c = 40.83941

0.7131b + 1.2319c = 2.266929

0.0454c = 0.127751

Теперь найдём коэффициенты:

c = 0.127751 / 0.0454 = 2.813899

b = (2.266929 - 1.2319 * 2.813899) / 0.7131 = - 1.682111

a = (40.83941 - 16.94 * 2.813899 - 22.968 * (- 1.682111) ) / 32.5094 = 0.978384

Проверим результаты вычислений, подставив полученные значения корней в исходную систему:

32.5094 * 0.978384 + 22.968 * (- 1.682111) + 16.94 * 2.813899 = 40.83941

22.968 * 0.978384 + 16.94 * (- 1.682111) + 13.2 * 2.813899 = 31.119972

16.94 * 0.978384 + 13.2 * (- 1.682111) + 11 * 2.813899 = 25.3237

40.8394 » 40.83941

31.12 » 31.119972

25.3228 » 25.3237

Таким образом, уравнение аппроксимирующей параболы имеет вид:

F (x) = 0.978384x2 - 1.682111x + 2.813899

4. НАХОЖДЕНИЕ ЗНАЧЕНИЙ АППРОКСИМИРУЮЩЕЙ ФУНКЦИИ

Найдём значения функции F(x) = 0.978384 x2 - 1.682111 x + 2.813899

на интервале [0.7; 1.7] с шагом h=0.1

x0 = 0.7

F( x0 ) = 0.978384 * 0.72 - 1.682111 * 0.7 + 2.813899 = 2.118622

x1 = x0 + h = 0.7 + 0.1 = 0.8

F( x1 ) = 0.978384 * 0.82 - 1.682111 * 0.8 + 2.813899 = 2.095734

x2 = 0.8 + 0.1 = 0.9

F( x2 ) = 0.978384 * 0.92 - 1.682111 * 0.9 + 2.813899 = 2.092711

x3 = 0.9 + 0.1 = 1.0

F( x3 ) = 0.978384 * 1.02 - 1.682111 * 1.0 + 2.813899 = 2.109553

x4 = 1.0 + 0.1 = 1.1

F( x4 ) = 0.978384 * 1.12 - 1.682111 * 1.1 + 2.813899 = 2.14626

x5 = 1.1 + 0.1 = 1.2

F( x5 ) = 0.978384 * 1.22 - 1.682111 * 1.2 + 2.813899 = 2.202831

x6 = 1.2 + 0.1 = 1.3

F( x6 ) = 0.978384 * 1.32 -1.682111 * 1.3 + 2.813899 = 2.279266

x7 = 1.3 + 0.1 = 1.4

F( x7 ) = 0.978384 * 1.42 - 1.682111 * 1.4 + 2.813899 = 2.375567

x8 = 1.4 + 0.1 = 1.5

F( x8 ) = 0.978384 * 1.52 - 1.682111 * 1.5 + 2.813899 = 2.491732

x9 = 1.5 + 0.1 = 1.6

F( x9 ) = 0.978384 * 1.62 - 1.682111 * 1.6 + 2.813899 = 2.627762

x10 = 1.6 + 0.1 = 1.7

F( x10 ) = 0.978384 * 1.72 - 1.682111 * 1.7 + 2.813899= 2.783656

5. РАСЧЕТ ПОГРЕШНОСТИ АПРОКСИМАЦИИ.

Для вычисления погрешности аппроксимации вычислим величину среднеквадратичного отклонения:

Здесь yi - значения решения дифференциального уравнения, полученные в п.1.2. (см. Таблицу 1), F(xi) - значения аппроксимирующей функции при тех же значениях xi, полученные в п. 4. Их разность показывает величину отклонения аппроксимирующей функции от аппроксимируемой в узлах xi.

Рассчитаем погрешность аппроксимации:

0 = F( x0 ) - y0 = 2.118622 - 2.1 = 0.018622

02 = 3.46779 * 10 - 4

1 = F( x1 ) - y1 = 2.095734 - 2.09763 = - 0.001896

12 = 3.59482 *10 - 6

2 = F( x2 ) - y2 = 2.092711 - 2.105547 = - 0.012836

22 = 1.64763 * 10 - 4

3 = F( x3 ) - y3 = 2.109553 - 2.125049 = - 0.015496

32 = 2.40126 * 10 - 4

4 = F( x4 ) - y4 = 2.14626 - 2.157721 = - 0.011461

42 = 1.31355 * 10 - 4

5 = F( x5 ) - y5 = 2.202831 - 2.205613 = - 0.002782

52 = 7.73953 * 10 - 6

6 = F( x6 ) - y6 = 2.279266 - 2.271475 = 0.007791

62 = 6.06997 * 10 - 5

7 = F( x7 ) - y7 = 2.375567 - 2.359045 = 0.06522

72 = 2.72977 * 10 - 4

8 = F( x8 ) - y8 = 2.491732 - 2.473328 = 0.08404

82 = 3.38707 * 10 - 4

9 = F( x9 ) - y9 = 2.627762 - 2.620626 = 0.007136

92 = 5.09225 * 10 - 5

10 = F( x10 ) - y10 = 2.783656 - 2.807662 = - 0.024006

102 = 5.76288 * 10 -4

d = Ö 0.0021939515 = Ö 1.9945013 * 10 - 4 = 0.014122681
1.412268 * 10 - 2

Данные расчётов снесены в Таблицу 2.

Таблица 2. Расчёт погрешности аппроксимации.

I

xi

yi

F(xi)

i

i2

0

0.7

2.1

2.118622

0.018622

3.46779 * 10 - 4

1

0.8

2.09763

2.095734

- 0.001896

3.59482 * 10 - 6

2

0.9

2.105547

2.092711

- 0.012836

1.64763 * 10 - 4

3

1.0

2.125049

2.109553

- 0.015496

2.40126 * 10 - 4

4

1.1

2.157721

2.14626

- 0.011461

1.31355 * 10 - 4

5

1.2

2.205613

2.202831

- 0.002782

7.73953 * 10 - 6

6

1.3

2.271475

2.279266

0.007791

6.06997 * 10 - 5

7

1.4

2.359045

2.375567

0.06522

2.72977 * 10 - 4

8

1.5

2.473328

2.491732

0.08404

3.38707 * 10 - 4

9

1.6

2.620626

2.627762

0.007136

5.09225 * 10 - 5

10

1.7

2.807662

2.783656

- 0.024006

5.76288 * 10 - 4

График погрешности аппроксимации представлен на рисунке 4.