Таким образом, внешне являясь полиглотом, компьютер понимает только один язык — язык машинных команд. Конечно, для общения и работы с компьютером, необязательно знать этот язык, но практически любой профессиональный программист рано или поздно сталкивается с необходимостью его изучения. К счастью, программисту не нужно пытаться постичь значение различных комбинаций двоичных чисел, так как еще в 50-е годы программисты стали использовать для программирования символический аналог машинного языка, который назвали языком ассемблера. Этот язык точно отражает все особенности машинного языка. Именно поэтому, в отличие от языков высокого уровня, язык ассемблера для каждого типа компьютера свой.
Из всего вышесказанного можно сделать вывод, что, так как язык ассемблера для компьютера “родной”, то и самая эффективная программа может быть написана только на нем (при условии, что ее пишет квалифицированный программист). Здесь есть одно маленькое “но”: это очень трудоемкий, требующий большого внимания и практического опыта процесс. Поэтому реально на ассемблере пишут в основном программы, которые должны обеспечить эффективную работу с аппаратной частью. Иногда на ассемблере пишутся критичные по времени выполнения или расходованию памяти участки программы. Впоследствии они оформляются в виде подпрограмм и совмещаются с кодом на языке высокого уровня.
К изучению языка ассемблера любого компьютера имеет смысл приступать только после выяснения того, какая часть компьютера оставлена видимой и доступной для программирования на этом языке. Это так называемая программная модель компьютера, частью которой является программная модель микропроцессора, которая содержит 32 регистра в той или иной мере доступных для использования программистом.
Данные регистры можно разделить на две большие группы:
В программах на языке ассемблера регистры используются очень интенсивно. Большинство регистров имеют определенное функциональное назначение.
Рис. 3. Пользовательские регистры микропроцессоров i486 и Pentium
Почему многие из этих регистров приведены с наклонной разделительной чертой? Нет, это не разные регистры — это части одного большого 32-разрядного регистра. Их можно использовать в программе как отдельные объекты. Так сделано для обеспечения работоспособности программ, написанных для младших 16-разрядных моделей микропроцессоров фирмы Intel, начиная с i8086. Микропроцессоры i486 и Pentium имеют в основном 32-разрядные регистры. Их количество, за исключением сегментных регистров, такое же, как и у i8086, но размерность больше, что и отражено в их обозначениях — они имеют
приставку e (Extended).
Все регистры этой группы позволяют обращаться к своим “младшим” частям (см. рис. 3). Рассматривая этот рисунок, заметьте, что использовать для самостоятельной адресации можно только младшие 16 и 8-битные части этих регистров. Старшие 16 бит этих регистров как самостоятельные объекты недоступны. Это сделано, как мы отметили выше, для совместимости с младшими 16-разрядными моделями микропроцессоров фирмы Intel.
Перечислим регистры, относящиеся к группе регистров общего назначения. Так как эти регистры физически находятся в микропроцессоре внутри арифметико-логического устройства (АЛУ), то их еще называют регистрами АЛУ:
Следующие два регистра используются для поддержки так называемых цепочечных операций, то есть операций, производящих последовательную обработку цепочек элементов, каждый из которых может иметь длину 32, 16 или 8 бит:
В архитектуре микропроцессора на программно-аппаратном уровне поддерживается такая структура данных, как стек. Для работы со стеком в системе команд микропроцессора есть специальные команды, а в программной модели микропроцессора для этого существуют специальные регистры:
Стек
Стеком называют область программы для временного хранения произвольных данных. Разумеется, данные можно сохранять и в сегменте данных, однако в этом случае для каждого сохраняемого на время данного надо заводить отдельную именованную ячейку памяти, что увеличивает размер программы и количество используемых имен. Удобство стека заключается в том, что его область используется многократно, причем сохранение в стеке данных и выборка их оттуда выполняется с помощью эффективных команд push и pop без указания каких-либо имен.
Стек традиционно используется, например, для сохранения содержимого регистров, используемых программой, перед вызовом подпрограммы, которая, в свою очередь, будет использовать регистры процессора "в своих личных целях". Исходное содержимое регистров изатекается из стека после возврата из подпрограммы. Другой распространенный прием - передача подпрограмме требуемых ею параметров через стек. Подпрограмма, зная, в каком порядке помещены в стек параметры, может забрать их оттуда и использовать при своем выполнении. Отличительной особенностью стека является своеобразный порядок выборки содержащихся в нем данных: в любой момент времени в стеке доступен только верхний элемент, т.е. элемент, загруженный в стек последним. Выгрузка из стека верхнего элемента делает доступным следующий элемент. Элементы стека располагаются в области памяти, отведенной под стек, начиная со дна стека (т.е. с его максимального адреса) по последовательно уменьшающимся адресам. Адрес верхнего, доступного элемента хранится в регистре-указателе стека SP. Как и любая другая область памяти программы, стек должен входить в какой-то сегмент или образовывать отдельный сегмент. В любом случае сегментный адрес этого сегмента помещается в сегментный регистр стека SS. Таким образом, пара регистров SS:SP описывают адрес доступной ячейки стека: в SS хранится сегментный адрес стека, а в SP - смещение последнего сохраненного в стеке данного (рис. 4, а). Обратитим внимание на то, что в исходном состоянии указатель стека SP указывает на ячейку, лежащую под дном стека и не входящую в него.
Рис 4. Организация стека: а - исходное состояние, б - после загрузки одного элемента (в данном примере - содержимого регистра АХ), в - после загрузки второго элемента (содержимого регистра DS), г - после выгрузки одного элемента, д - после выгрузки двух элементов и возврата в исходное состояние.
Загрузка в стек осуществляется специальной командой работы со стеком push (протолкнуть). Эта команда сначала уменьшает на 2 содержимое указателя стека, а затем помещает операнд по адресу в SP. Если, например, мы хотим временно сохранить в стеке содержимое регистра АХ, следует выполнить команду
push АХ
Стек переходит в состояние, показанное на рис. 1.10, б. Видно, что указатель стека смещается на два байта вверх (в сторону меньших адресов) и по этому адресу записывается указанный в команде проталкивания операнд. Следующая команда загрузки в стек, например,
push DS
переведет стек в состояние, показанное на рис. 1.10, в. В стеке будут теперь храниться два элемента, причем доступным будет только верхний, на который указывает указатель стека SP. Если спустя какое-то время нам понадобилось восстановить исходное содержимое сохраненных в стеке регистров, мы должны выполнить команды выгрузки из стека pop (вытолкнуть):
pop DS
pop AX
Какого размера должен быть стек? Это зависит от того, насколько интенсивно он используется в программе. Если, например, планируется хранить в стеке массив объемом 10 000 байт, то стек должен быть не меньше этого размера. При этом надо иметь в виду, что в ряде случаев стек автоматически используется системой, в частности, при выполнении команды прерывания int 21h. По этой команде сначала процессор помещает в стек адрес возврата, а затем DOS отправляет туда же содержимое регистров и другую информацию, относящуюся к прерванной программе. Поэтому, даже если программа совсем не использует стек, он все же должен присутствовать в программе и иметь размер не менее нескольких десятков слов. В нашем первом примере мы отвели под стек 128 слов, что безусловно достаточно.