Отпечатанную цифровую голограмму затем фотографируют с соответствующим уменьшением и используют для восстановления
|
Рис. 2 Последовательность вычислений голограммы Фурье |
изображения оптическим путем. Очень часто голограмму Фурье пеставляют в двоичном (бинарном) виде. В этом случае ее прозрачность имеет только два значения: 0 или 1. Двоичную голограмму рассчитывают следующим образом. Прозрачность голограммы как функцию пространственных частот обозначим через
В данном случае 1 соответствует уровню белого, а 0 - черного. Окончательно получим
В выборе параметров b и
Киноформ
Часто встречаются случаи, когда комплексная амплиуда объектной световой волны
Процесс изготовления киноформа выглядит следующим образом.
На компьютере рассчитываются дискретные значения фазы
Данный массив кодируется массивом значений яркости в многоградационной шкале, который уже отображается в виде картины на выходное устройство компьютера, например на дисплей. Полученная картина фотографируется с необходимым уменьшением и конечный фотоснимок отбеливается в дубящем отбеливателе. При отбеливании градации фотографического почернения превращаются в соответствующее распределение значений оптической толщины. Полученный таким образом киноформ имеет функцию пропускания
Знак показателя экспоненциального сомножителя определяется тем, что используется в качестве киноформа- негатив или позитив фотоснимка картины киноформа. Соответственно и изображение, восстанавливаемое киноформом, будет мнимым или действительным.
Из рассмотрения функции пропускания киноформа (20) следует, что для восстановления исходного волнового фронта без искажений необходимо, чтобы константа с равнялась единице. Это означает, что свет, падающий на участок с фазой
При расчёте, были получены несколько двоичных файлов. По техническим причинам, законченная голограмма не была изготовлена.
В настоящее время существует большое количество способов записи и обработки получаемой в когерентном свете оптической информации о структуре того или иного физического объекта. Самый распространенный из них состоит в получении с помощью оптической системы изображения интересующего объекта, его регистрации с использованием возможностей фото- и видеотехники и в последующей апостериорной обработке изображения. Другой способ, также получивший широкое распространение, основан на получении голограммы объекта. Этот способ, в отличие от первого, позволяет регистрировать информацию не только о распределении интенсивности света, отраженного или излучаемого объектом, но и о распределении фазы световых колебаний. Последнее обстоятельство создает дополнительные возможности по корректировке характеристик изображения.
Термин "компьютерная оптика" является относительно новым и не приобрел еще строгого определения. Разные авторы очень часто вкладывают в него различное содержание. Можно сказать, что в самом широком смысле слова "компьютерная оптика" - это компьютеры в оптике и оптика в компьютерах. Сюда относятся численные решения задач дифракции и фокусировки излучения, автоматизированное проектирование и гибкое автоматизированное производство оптических систем, обработка изображений, оптический вычислительный эксперимент, оптические процессоры и запоминающие устройства, цифровая голография.
Очень часто формулировка предмета компьютерной оптики как научного направления сужается и в нее вкладывается более конкретный смысл. При этом считается, что компьютерная оптика - это получение на основе применения ЭВМ оптических элементов, осуществляющих требуемое преобразование волновых полей.
.
1. Сисакян И.Н., Сойфер В.А. Компьютерная оптика. Достижения и проблемы //сб. "Компьютерная оптика" под ред. акад. Велихова Е.П. и акад. Прохорова А.М., 1987, в.1, с.5-19.
2. Сойфер В.А. Компьютерная оптика //Соросовский образовательный журнал, 1998
3. Франсон М. Голография.- М.: Мир, 1972, 248 с.
4. Горохов Ю.Г., Неплюев Л.Н. Голография в приборах и устройствах.- М.: Энергия,1974, 80 с.
5. Федоров Б.Ф., Цибулькин Л.М. Голография.- М.: Радио и связь, 1989, 140 с.
6. Кузнецова Т.И. О фазовой проблеме в оптике //УФН, 1988, т.154, в. 4, с. 677-690.
7. Воронцов М.А., Шмальгаузен В.И. Принципы адаптивной оптики.- М.: Наука, 1985, 336 с.
8. Воронцов М.А., Корябин А.В., Шмальгаузен В.И. Управляемые оптические системы. - М.: Наука, 1988, 270 с.
9. Гроссо Р., Еллин М. Мембранное зеркало как элемент адаптивной оптической системы //Сб. статей "Адаптивная оптика" под ред. Э.А. Витриченко - М.: Мир, 1980, с. 428-447.
10. Ярославский Л.П. Цифровая обработка полей в оптических системах. Цифровая оптика. //сб. "Новые физические принципы оптической обработки информации" под ред. С.А. Ахманова и М.А. Воронцова, - М.: Наука. Гл. ред. физ.-мат. лит., 1990, 400 с.
11. Мирошников М.М., Нестерук В.Ф. Развитие методологии иконики и ее структурной схемы //Труды Государственного оптического института им. С.И. Вавилова, 1982, т. 57, в. 185, с. 7- 13.
12. Сойфер В.А. Компьютерная обработка изображений. Часть 1. Математические модели //Соросовский образовательный журнал, 1996, №2, с.118-124.
13. Сойфер В.А. Компьютерная обработка изображений. Часть 2. Методы и алгоритмы //Соросовский образовательный журнал, 1996, №3, с.110-121.
//*************************************************************
#include <iostream.h>
#include <math.h>
#include <fstream.h>
const int SIZE = 1000; //размер голограммы
const int SIZE2 = 500; //
float hol[SIZE][SIZE]; //заводим выходной массив
ofstream outfile; //для вывода в файл
//***********************************************************
int main ()
{
outfile.open("data.hol"); //открываем файл
int h; //определяем переменные для использования в циклах
int i;
int j;