средняя продолжительность однократного диагностирования (тд). Величина тд включает в себя продолжительность выполнения вспомогательных операций диагностирования и продолжительность собственно диагностирования. Часто удобнее использовать коэффициент продолжительности диагностирования
где Тв — время восстановления. Коэффициент kд показывает, какая часть времени восстановления остаемся на восстановительные процедуры. Так, например, если тд= = 15 мин, а Тв= 60 мин, kд= 1—15/60=0,75;
глубина поиска дефекта (L). Величина L указывает составную часть диагностируемого устройства с точностью, до которой определяется место дефекта.
В ЭВМ за глубину поиска дефекта L принимается число предполагаемых неисправными сменных блоков (ТЭЗ), определяемое по формуле
где ni — число предполагаемых неисправными сменных блоков (ТЭЗ) при 1-й неисправности; N — общее число неисправностей.
В качестве показателя глубины поиска дефекта можно также использовать коэффициент глубины поиска дефекта kг.п.д, определяющий долю неисправностей, локализуемых с точностью до М сменных блоков (ТЭЗ), М=l, 2, 3, ..., m.
Пусть di==l, если при i-й неисправности число подозреваемых сменных блоков не превышает М. В противном случае аi=0. Тогда (ni<M)
Для ЭВМ с развитой системой диагностирования для M<3 обычно kг.п.д>0,9. Это означает, что для 90 % неисправностей число предполагаемых неисправными сменных блоков, указанных в диагностическом справочнике, не превышает трех; объем диагностического ядра h — доля той аппаратуры в общем объеме аппаратуры ЭВМ, которая должна быть заведомо исправной до начала процесса диагностирования. В качестве показателя объема диагностического ядра можно пользоваться также величиной
Для ЭВМ, использующих принцип раскрутки и метод микродиагностирования, H>0,9.
.В качестве интегрального показателя системы диагностирования можно пользоваться коэффициентом
Для приведенных в качестве примеров количественных показателей системы диагностирования интегральный коэффициент
kи = 0,95.0,90.0,75.0,90.0,90 = 0,51.
2. МЕТОД ДВУХЭТАПНОГО ДИАГНОСТИРОВАНИЯ
Метод двухэтапного диагностирования — это метод диагностирования, при котором объектами элементарных проверок на разных этапах диагностирования являются схемы c памятью (регистры и триггеры) и комбинационные схемы.
Рис. 7. Обобщенная схема системы диагностирования, реализующей метод двухэтапного диагностирования: ДУ — диагностируемое устройство: 1, ...,i l,..., n — регистры; KCi.... KСm—комбинационные схемы
Диагностическая информация, включающая в себя данные тестового воздействия, результат и состав контрольных точек элементарной проверки, адреса следующих элементарных проверок в алгоритме диагностирования, имеет стандартный формат, называемый тестом локализации неисправностей (ТЛН).
Обобщенная, схем а системы диагностирования, использующей метод двухэтапного диагностирования, показана на рис. 7.
Подача тестовых воздействий, снятие ответа, анализ и выдача результатов реализации алгоритма диагностирования выполняются с помощью стандартных диагностических операций «Установка», «Опрос», «Сравнение» и «Ветвление».
Рис. 8. Формат ТЛН
Стандартный формат ТЛН показан на рис. 8. Тест локализации неисправностей содержит установочную и управляющую информацию, адрес ячейки памяти, в которую записывается результат элементарной проверки, эталонный результат, адреса ТЛН, которым передается управление при совпадении и несовпадении результата с эталонным, и номер теста. Стандартные диагностические операции, последовательность которых приведена на рис. 9, могут быть реализованы аппаратурно или микропрограммно.
Диагностирование аппаратуры по этому методу выполняется в два этапа:
на первом этапе проверяются все регистры и триггеры, которые могут быть установлены с помощью операции «Установка» и опрошены по дополнительным выходам операцией «Опрос»;
на втором этапе проверяются все комбинационные схемы, а также регистры и триггеры, не имеющие непосредственной установки или опроса.
Каждая элементарная проверка, которой соответствует один ТЛН, выполняется следующим образом: c помощью операции «Установка» устанавливаются регистры и триггеры ДУ, в том числе и не проверяемые данным ТЛН, в состояние, заданное установочной информацией ТЛН (установка регистров и триггеров может выполняться по существующим или дополнительным входам). Управляющая информация задает адрес микрокоманды (из числа рабочих микрокоманд), содержащей проверяемую микрооперацию и число микрокоманд, которые необходимо выполнить, начиная с указанной. В тестах первого этапа эта -управляющая информация отсутствует, так как после установки сразу выполняется опрос.
Рис. 9 Операции, выполняемые при диагностировании по методу двухэтапного диагностирования
В тестах, предназначенных для проверки комбинационных схем, управляющая информация задает адрес микрооперации приема сигнала с выхода комбинационной схемы в выходной регистр (рис. 10).
Рис.10. Схема выполнения одного ТЛН
Управляющая информация может задавать адреса микроопераций, обеспечивающих передачу тестового воздействия на вход проверяемых средств и транспортировку результата в триггеры, имеющие опрос.
С помощью операции «Опрос» записывается состояние всех регистров и триггеров ДУ в оперативную или служебную память.
Для выполнения операции «Опрос» в аппаратуру ДУ вводятся дополнительные связи с выходов регистров и триггеров на вход блока коммутации СТД, связанного с информационным входом оперативной или служебной памяти.
С помощью операции «Сравнение я ветвление» обеспечивается сравнение ответа ДУ на тестовое воздействие с эталонной информацией. ТЛН задается адрес состояния проверяемого регистра или триггера в оперативной и служебной памяти, записываемого с помощью операции «Опрос», а также его эталонное состояние. Возможны два исхода операции «Сравнение и ветвление»— совпадение и несовпадение ответа с эталоном. Метод двухэтапного диагностирования использует, как правило, условный алгоритм диагностирования. Поэтому ТЛН содержит два адреса ветвления, задающих начальный адрес следующих ТЛН в оперативной памяти.
Для хранения ТЛН, как правило, используется магнитная лента, а для их ввода — стандартные или специальные каналы ввода.
Тесты локализации неисправностей обычно загружаются в оперативную память и подзагружаются в нее по окончании выполнения очередной группы ТЛН. Поэтому до начала диагностики по методу ТЛН проверяется оперативная память и микропрограммное управление.
При обнаружении отказа на пульте индицируется номер теста, по которому в диагностическом справочнике отыскивается неисправный сменный блок.
В качестве примера реализации метода двухэтапного диагностирования рассмотрим систему диагностирования процессора ЭВМ ЕС-1030. Для нормальной загрузки и выполнения диагностических тестов процессора ЭВМ ЕС-1030 необходима исправность одного из селекторных каналов и начальной области оперативной памяти (ОП). Поэтому вначале выполняется диагностирование ОП. Для этого имеется специальный блок, обеспечивающий проверку ОП в режимах записи и чтения нулей (единиц) тяжелого кода/обратного тяжелого кода. Неисправность ОП локализуется с точностью до адреса и бита.
Следующие стадии диагностирования, последовательность которых приведена на рис. 11, используют уже проверенную оперативную память.
На нервов стадии диагностические тесты загружаются в начальную область ОП (первые 4 Кслов) и затем выполняются с помощью диагностического оборудования. Тесты расположены на магнитной ленте в виде массивов. После выполнения тестов очередного массива в ОП загружается и выполняется следующий массив тестов. Загрузка тестов выполняется по одному из селекторных каналов в специальном режиме загрузки ТЛН.