где п—число вершин граф-схемы алгоритма, соответствующее числу тактов выполнения операции с конкретными условиями. Эталонной последовательностью состояний считается последовательность состояний Sil, l=0, 1,...,п, имеющих место при отсутствии ошибок.
Проверка выполняется путем сравнения реального состояния ЭВМ Sil на l-м такте i-го пути с эталонным Sэil.
Несовпадение Sil и Sэil является признаком неисправности.
Процедура диагностирования по методу эталонных состояний приведена на рис. 17.
Для реализации метода эталонных состояний средства тестового диагностирования должны иметь:
средства управления потактовой работой ЭВМ;
средства опроса состояния ЭВМ;
средства сравнения состояния с эталонным и средства сообщения о неисправности.
Обычно этот метод используется в тех случаях, когда средства тестового диагностирования имеют достаточно большие возможности. Например, этот метод может использоваться при диагностировании каналов с помощью процессора. Наибольшее применение этот метод находит в устройствах со схемной интерпретацией алгоритмов функционирования.
В силу неопределенности состояний некоторых триггеров каждому состоянию Sil может соответствовать некоторое подмножество состояний Silk, где k=0,1,..., т, т — множество неопределенных состояний. Поэтому обычно до сравнения с эталоном выполняется маскирование состояний. Маска снимает неопределенные состояния .
Обычно управление потактовой работой устройства и опрос состояния устройства выполняются с помощью команды ДИАГНОСТИКА, а сравнение с эталоном, маскирование и сообщение о неисправности—с помощью команд на программном уровне.
Команда ДИАГНОСТИКА адресует управляющее слово в ОП, которое поступает на вход диагностируемого устройства, как показано на рис. 8.18. Сочетание бит управляющего слова обеспечивает продвижение тактов, а также опрос состояния и запись его в ОП.
Остальные операции, такие как маскирование состояния с целью исключения неопределенных бит, сравнение его с эталонным состоянием и сообщение о неисправности, выполняются программой диагностирующего устройства.
6. МЕТОД ДИАГНОСТИРОВАНИЯ С ПОМОЩЬЮ СХЕМ ВСТРОЕННОГО КОНТРОЛЯ.
Этот метод характеризуется тем, что объектом элементарной проверки является сменный блок, а средствами функционального диагностирования являются схемы встроенного контроля (СВК), конструктивно совмещенные с каждым) сменным блоком.
На рис. 19 показаны диагностируемое устройство и схемы встроенного контроля, образующие самопроверяемый сменный блок. Наибольшая вероятность правильного диагностирования достигается при полной проверяемости ДУ и самопроверяемости СВК.
Поэтому здесь приводится только определение полной проверяемости ДУ.
Рис. 19 Самопроверяемый сменный блок.
Диагностируемое устройство называется полностью проверяемым, если любая его неисправность заданного класса обнаруживается СВК в момент ее первого проявления на выходных устройствах .
Рис 20 Структура системы диагностирования, использующей схемы встроенного контроля
Требование полной проверяемости. ДУ и самопроверяемости СВК приводит к значительным аппаратурным затратам, что ограничивает применяемость данного метода устройствами, реализованными в основном на больших интегральных микросхемах.
На рис. 20 приведена структура системы функционального диагностирования. Локальными средствами функционального диагностирования ЛСФД являются самопроверяемые СВК с парами выходов fi1, fi2, приданные каждому сменному блоку Бi общим средством функционального диагностирования ОСФД—устройство анализа и индикации УАИ. Назначением последнего является синхронизация сигналов ошибок от сменных блоков с учетом их связей, предотвращение возможной неоднозначности индикации из-за распространения сигналов ошибок и однозначная индикация неисправного блока.
Достоинством метода диагностирования с помощью схем встроенного контроля является практически мгновенное диагностирование сбоев и отказов, сокращение затрат на локализацию перемежающихся отказов и на разработку диагностических тестов.
7. МЕТОД ДИАГНОСТИРОВАНИЯ С ПОМОЩЬЮ САМОПРОВЕРЯЕМОГО ДУБЛИРОВАНИЯ.
Этот метод аналогичен предыдущему, так как он тоже основан на принципе самопроверяемости сменных блоков. Разница состоит в том, что самопроверяемость сменных блоков достигается введением в него дублирующей аппа-
Рис. 21 Структурная схема самопроверяемого блока: Cж1,.., Cжk-l — схемы сжатия.
ратуры и самопроверяемых схем сжатия, обеспечивающих получение сводного сигнала ошибки, свидетельствующего о неисправности сменного блока. На рис. 21 приведена структурная схема самопроверяемого блока. Этот способ обеспечения самопроверяемости приводит к большим, дополнительным затратам аппаратуры, что оправдывает его применение в больших интегральных .микросхемах. При реализации ЭВМ на больших и сверхбольших интегральных микросхемах последние часто используются неполностью, так как ограничивающим фактором является не число вентилей БИС, а число выводов. Поэтому введение в БИС дублирующих схем, обеспечивающих ее самопроверяемость, позволяет более полно использовать возможность БИС без значительного увеличения объема аппаратуры .
8. МЕТОД ДИАГНОСТИРОВАНИЯ ПО РЕЗУЛЬТАТАМ РЕГИСТРАЦИИ СОСТОЯНИЯ.
Этот метод диагностирования характеризуется тем, что неисправность или сбой локализуется по состоянию ЭВМ, зарегистрированному в .момент проявления ошибки и содержащему информацию о состоянии схем контроля, регистров ЭВМ, адресов микрокоманд, предшествующих моменту появления ошибки, и другую информацию. Место возникновения ошибки определяется по зарегистрированному состоянию путем прослеживания трассы ошибки от места ее проявления до места ее возникновения. Диагноз выполняется с помощью программных средств диагностирования самой ЭВМ, если Диагностируется место возникновения сбоя, либо другой ЭВМ, если диагностируется отказ. В ЭВМ, имеющих сервисные процессоры, диагноз выполняется с помощью микропрограмм сервисного процессора.