Второй подход основывается на том, что зависимости между данными ищутся автоматически. Количество продуктов, выполняющих автоматический поиск зависимостей, говорит о растущем интересе производителей и потребителей к системам именно такого типа. Сообщается о резком росте прибылей клиентов за счет верно найденной, заранее неизвестной зависимости. Упоминается пример сети британских универсамов, где ИАД применялся при анализе убытков от хищений товаров в торговых залах. Было обнаружено, что к наибольшим убыткам приводят хищения мелких "сопутствующих" товаров: ручек, батареек и т. п. Простой перенос прилавков с этими товарами ближе к расчетным узлам позволил снизить убытки на 1000%.
Сегодня количество фирм, предлагающих продукты ИАД, исчисляется десятками, однако, не рассматривая их подробно, приведем лишь классификацию процессов ИАД, применяющихся на практике.
Процессы ИАД подразделяются на три большие группы: поиск зависимостей (discovery), прогнозирование (predictive modelling) и анализ аномалий (forensic analysis). Поиск зависимостей состоит в просмотре базы данных с целью автоматического выявления зависимостей. Проблема здесь заключается в отборе действительно важных зависимостей из огромного числа существующих в БД. Прогнозирование предполагает, что пользователь может предъявить системе записи с незаполненными полями и запросить недостающие значения. Система сама анализирует содержимое базы и делает правдоподобное предсказание относительно этих значений. Анализ аномалий - это процесс поиска подозрительных данных, сильно отклоняющихся от устойчивых зависимостей.
В системах ИАД применяется чрезвычайно широкий спектр математических, логических и статистических методов: от анализа деревьев решений (Business Objects) до нейронных сетей (NeoVista). Пока трудно говорить о перспективности или предпочтительности тех или иных методов. Технология ИАД сейчас находится в начале пути, и практического материала для каких-либо рекомендаций или обобщений явно недостаточно.
Необходимо также упомянуть об интеграции ИАД в информационные системы. Многие методы ИАД возникли из задач экспертного анализа, поэтому входными данными для них традиционно служат "плоские" файлы данных. При использовании ИАД в СППР часто приходится сначала извлекать данные из Хранилища, преобразовывать их в файлы нужных форматов и только потом переходить собственно к интеллектуальному анализу. Затем результаты анализа требуется сформулировать в терминах бизнес-понятий. Важный шаг вперед сделала компания Information Discovery, разработавшая системы OLAP Discovery System и OLAP Affinity System, предназначенные специально для интеллектуального анализа многомерных агрегированных данных.
Создание СППР на основе хранилищ данных - сложный, но обозримый процесс, требующий знания бизнеса, программно-технического инструментария и опыта выполнения крупных проектов. Вместе с тем внедрение подобных систем может дать преимущества в бизнесе, которые будут тем ощутимее, чем раньше организация начнет создание СППР. По прогнозам консалтинговой фирмы Gartner Group, к 2010 году примерно 90-95% компаний будут использовать хранилища данных.
Значимость информационных систем подобного уровня признается и представителями большинства российских компаний. Однако в силу ряда причин, инициативные или заказные работы ведутся зачастую достаточно бессистемно, в основном в двух направлениях:
- закупка и тестирование разнообразных продуктов, применяемых при создании СППР и ХД (к сожалению, большинство из них плохо сопрягаются друг с другом, из-за чего создается ложное впечатление "неподъемности" проблемы);
- решение частного вопроса о повышении производительности отчетных систем путем локального перепроектирования структуры хранения или перехода на более современные и сложные программные средства.
Список литературы
1. Система поддержки принятия решений в человеко-машинных системах управления. Труды Института проблем управления РАН им. В.А.Трапезникова. Том УШ. М.: ИПУРАН, 2000г. с. 46-59.
2. Арлазаров В.Л., Журавлев Ю.И., Ларичев О.И., Лохин В.М., Макаров И.М., Рахманкулов В.З., Финн В.К. Теория и методы создания интеллектуальных компьютерных систем // Информационные технологии и вычислительные системы. -1998. -№1.
3. Валькман Ю.Р. Интеллектуальные технологии исследовательского проектирования. -Киев.: Port-Royal. -1998.
4. Комарцова Л.Г. Оптимизация вычислительной системы на ее имитационной модели. // Вестник МГТУ им. Н.Э.Баумана. - сер. "Приборостроение". -1999. -№2. -С.48-60.
5. Литвак Б.Г. Экспертные технологии управления. М.: Дело, 2004г.
6. Трахтенгеру Э.А. Компьютерная поддержка принятия решений. – М.: Наука, 1998.
7. Чекинов Г.П., Куляница А.Л., Бондаренко В.В. Применение ситуационного управления в информационной поддержке принятия решений при проектировании организационно-технических систем // Информационные технологии в проектировании и производстве, № 2, 2003.