Лекции: к.т.н., доц. Шарнов Александр Иванович.
Практика: Ивакин Константин Николаевич.
Россия стоит на пути исторической необходимости перехода на новый уровень общественного и экономического развития, определяемыми жестокими требованиями рыночной экономики. Речь идет о пути формирования информационного общества. Материальная база информационного общества является информационная экономика. Основы информационной экономики составляет создание и потребление информационных ресурсов или информационных ценностей.
1).Главной формой накопления является накопление знаний и другой полезной информации.
2).Это изменение характера производства процессов в основных областях.
3).Экономически оправданным является мелкосерийное и индивидуальное производство.
4).Резкое возрастание скорости экономических процессов.
5).Усиление интеграционных процессов.
Развитые страны мира стали на путь информационной экономики в 70 годах.
1).Превышение суммарных затрат, чисто информационной базы над другими отраслями.
2).Возрастание доли не вещественных затрат.
3).Формирование глобальных коммуникаций сети общества.
4).Увеличение в производстве до 50% населения занятые информационной обработкой.
Требования пользователей к выполнению вычислительных работ определяется подбором и настройкой технических и программных средств объединенных в одну структуру.
Структура ЭВМ – это совокупность ее элементов и их связей. Различают структуры технических, программных и аппаратурно-программных средств. Архитектура ЭВМ – это многоуровневая иерархия аппаратурно-программных средств, из которых состоит ЭВМ. Каждый из уровней допускает многовариантное построение и применение.
Детализацией архитектурного и структурного построения ЭВМ занимаются различные категории специалистов вычислительной техники:
1. Инженеры (схема техники) – проектируют отдельные технические устройства и разрабатывают методы сопряжения друг с другом.
2. Системные программисты – создают программы управления техническими средствами, информационного распределения между уровнями, организацию вычислительного процесса.
3. Прикладные программисты – разрабатывают пакеты программ более высокого уровня, которые обеспечивают взаимодействие пользователя с ЭВМ и необходимый для этого сервис.
4. Специалисты по эксплуатации ЭВМ – занимаются общими вопросами взаимодействия пользователя с ЭВМ.
Содержание знаний и умений специалистов по ПО и его эксплуатации составляют:
1) Технические и эксплуатационные характеристики.
2) Производительность ЭВМ – объем работ осуществляющих ЭВМ в единицу времени.
3) Емкость запоминающих устройств: ОЗУ и ДЗУ.
4) Надежность – это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени.
5) Точность – это возможность различать почти равные значения.
6) Достоверность – это свойство информации быть правильно воспринятой.
Классификация ЭВМ
Величина и разнообразие современного парка ЭВМ потребовали системы квалификации ЭВМ. Предложено много принципов классификации:
1. Классификация ЭВМ по форме представления величин вычислительной машины делят на:
- аналоговые (непрерывного действия) АВМ
- цифровые (дискретного действия) ЦВМ
- аналого-цифровые (гибридные) ГВМ
В АВМ обрабатываемая информация представляется соответствующими значениями аналоговых вычислений: ток, напряжение угол поворота.
В ЦВМ (ЭВМ) информация кодируется двоичным кодом. Широкое применение получили ЦВМ с электрическим представлением дискретной информации – электронные ЦВМ. 2. Классификация ЭВМ по поколениям (по элементарной базе):
- Первое поколение (50г.): ЭВМ на электронных вакуумных лампах.
- Второе поколение (60г.): ЭВМ на дискретных полупроводниковых приборах (транзисторах).
- Третье поколение (70г.): ЭВМ на полупроводниковых интегральных схемах с малой степенью интеграции.
- Четвертое поколение (80г.): ЭВМ на больших интегральных схемах.
- Пятое поколение (90): ЭВМ на сверхбольших интегральных схемах.
- Шестое и последующие поколения: оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой – с распределенной степенью большого числа несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.
Интегральная схема – электронная схема специального назначения, выполненная в виде единого полупроводникового кристалла, объединяющего большое число диодов и транзисторов.
3. Классификация ЭВМ по мощности (быстродействию):
1).Супер-ЭВМ – машины для крупно-маштабных задач (фирма IBM).
2).Большие ЭВМ – машины для территориальных, региональных задач.
3).Средние ЭВМ – машины очень широкого распространения.
4).Малые ЭВМ.
5).ПЭВМ (персональные ЭВМ).
6).Микро ЭВМ и микропроцессоры.
7).Сети ЭВМ.
Общие принципы построения современных ЭВМ.
Основным принципом построения ЭВМ является программное управление, в основе которого лежит представление алгоритма решения любой задачи в виде программы вычислений.
Алгоритм – это конечный набор предписаний, определяющий решения задачи посредством конечного количества операций (ISO 2382/1-84 международный стандарт).
Программа – это упорядоченное последовательность команд подлежащих обработки.
Принцип программного управления может быть осуществлен разными способами. Стандартом для построения практически всех ЭВМ был представлен в 1945 году Нейманом. Схема ЭВМ, отвечающая программному принципу управления отражает характер действия человека по алгоритму.
|
программы потоки
и исходные информации
данные
Обобщенная структура ЭВМ Джен Фон Неймана первого и второго поколений
УПД – устройство подготовки данных.
УВС – устройство ввода.
АЛУ – арифметико-логическое устройство.
УУ – устройство управления.
ОЗУ – оперативное запоминающее устройство.
ДЗУ – длительно запоминающее устройство
ВЗУ – внешнее запоминающее устройство.
УВ – устройство вывода.
ЗУ+АЛУ+УУ – процессор.
Любая ЭВМ имеет устройство ввода информации, с помощью которого в ЭВМ вводят программы решения задач и данные к ним.
ОЗУ – предназначено для оперативного запоминания программы хранящейся в исполнении.
ВЗУ – предназначено для долговременного хранения информации.
Кэш-память – промежуточная память между ОЗУ и ВЗУ.
УУ – предназначено для автоматического выполнения программ путем принудительной координации всех остальных устройств ЭВМ.
АЛУ – выполняет арифметические и логические операции над данными. Основой АЛУ является операционный автомат, в состав которого входят: сумматоры, счетчики, логические операции. Классическая структура ЭВМ с переходом на БИС (большие интегральные схемы) перешла в понятие архитектура ЭВМ.
Устройства
сопряжения
Обобщенная архитектура третьего и четвертого поколений
В ЭВМ третьего поколения усложнение структуры произошло за счет разделения процессов ввода/вывода информации, и ее обработки. Появляется понятие процессор, где неразрывно связаны СОЗУ (сверх оперативное устройство), АЛУ и УУ. Появляется понятие каналы ввода/вывода, которые делят на мультиплексные (МК) и селекторные (СК) каналы.
МК – предназначены обслуживать большое количество медленно-скоростных устройств.
СК – обслуживают высокоскоростные, отдельные устройства.
Применительно к ПЭВМ архитектура приняла упрощенный вид архитектуры малых машин (принцип открытой архитектуры, где главным элементом является системная магистраль). Ядро ПЭВМ образует процессор и основная память. Подключение всех остальных устройств осуществляется через адаптеры (устройства сопряжения).
Обобщенная архитектура ПЭВМ