Трафик вычислительных сетей имеет ярко выраженный асинхронный и пульсирующий характер. Чувствительность компьютерного трафика к потерям данных высокая, так как без утраченных данных обойтись нельзя и их необходимо восстановить за счет повторной передачи.
Мультимедийный трафик, передающий, например, голос или изображение, характеризуется низким коэффициентом пульсаций, высокой чувствительностью к задержкам передачи данных (отражающихся на качестве воспроизводимого непрерывного сигнала) и низкой чувствительностью к потере данных (из-за инерционности физических процессов потерю отдельных замеров голоса или кадров изображения можно компенсировать сглаживанием на основе предыдущих и последующих значений).
Сложность совмещения компьютерного и мультимедийного трафика с диаметрально противоположными характеристиками хорошо видно на следующем рисунке.
Два типа трафика : a-компьютерный; b-мультимедийный
На возможности совмещения этих двух видов трафика большое влияние оказывает размер компьютерных пакетов.
Для пакета, состоящего из 53 байт, при скорости в 155 Мбит/с время передачи кадра на выходной порт составляет не менее 3 мкс. Так что эта задержка не очень существенна для трафика, пакеты которого должны передаваться каждые 125 мкс.
Выбор для передачи данных любого типа небольшой ячейки фиксированного размера еще не решает задачу совмещения разнородного трафика в одной сети, а только создает предпосылки для ее решения.
Разработчики технологии АТМ проанализировали всевозможные образцы трафика, создаваемые различными приложениями, и выделили 4 основных класса трафика, для которых разработали различные механизмы резервирования и поддержания требуемого качества обслуживания.
Класс трафика (называемый также классом услуг - service class) качественно характеризует требуемые услуги по передаче данных через сеть АТМ. Требования к синхронности передаваемых данных очень важны для многих приложений - не только голоса, но и видеоизображения, и наличие этих требований стало первым критерием для деления трафика на классы.
В результате было определено пять классов трафика, отличающихся следующими качественными характеристиками:
наличием или отсутствием пульсации трафика, то есть трафики CBR или VBR;
требованием к синхронизации данных между передающей и принимающей сторонами;
типом протокола, передающего свои данные через сеть АТМ, - с установлением соединения или без установления соединения (только для случая передачи компьютерных данных).
Основные характеристики классов приведены в таблице 1.
Очевидно что только качественных характеристик, задаваемых классом трафика, для описания требуемых услуг оказывается недостаточно. В технологии АТМ для каждого класса трафика определен набор количественных параметров, которые приложение должно задать. В технологии АТМ также поддерживается и набор основных количественных параметров для трафиков.
2.2 Классы трафика АТМ
Класс трафика | Характеристика |
A | С установлением соединения.Требуются временные соотношения между передаваемыми и принимаемыми данными.Пр.: голосовой трафик, трафик телевизионного изображения. |
B | С установлением соединения.Требуются временные соотношения между передаваемыми и принимаемыми данными.Пр.: компрессированный голос, компрессированное видеоизображение. |
C | С установлением соединения.Не требуются временные соотношения между передаваемыми и принимаемыми данными.Пр.: трафик компьютерных сетей, в которых конечные узлы работают по протоколам с установлением соединений: frame relay, X.25 |
D | Без установления соединения.Не требуются временные соотношения между передаваемыми и принимаемыми данными.Пр.: трафик компьютерных сетей, в которых конечные узлы работают по протоколам с установлением соединений(Ethernet, DNS) |
X | Тип трафика и его параметры определяются пользователем. |
Необходимо подчеркнуть, что задание только параметров трафика часто не полностью характеризует требуемую услугу, поэтому задание класса трафика полезно для уточнения нужного характера обслуживания и данного соединения сетью.
В некоторых случаях специфика приложения такова, что ее трафик не может быть отнесен к одному из четырех стандартных классов. Поэтому для этого случая введен еще один класс X, который не имеет никаких дополнительных описаний, а полностью определяется теми количественными параметрами трафика и качеством обслуживания, которые организовываются в трафик - контракте.
3 Достоинства и недостатки
3.1 Достоинства
В представлении большинства пользователей новая сетевая технология ассоциируется, в первую очередь, с большей полосой пропускания. Однако технология АТМ — это не только и не столько быстродействие; последнее является, скорее, следствием других ее особенностей.
В основе технологии АТМ лежат прямые соединения между периферийными устройствами.
Динамически создаваемые виртуальные каналы могут иметь различные приоритеты и различные гарантии для получения необходимой им полосы пропускания, причем в рамках одного быстродействующего физического соединения могут быть созданы одновременно несколько виртуальных каналов с различными характеристиками.
АТМ включает в себя очень мощные инструменты для управления трафиком, которые еще далеко не достигли пределов своего совершенства — такие, как различные категории качества услуг и сложные механизмы обратной связи. Именно они позволяют одновременно передавать информацию различного типа, предъявляющую диаметрально противоположные требования к параметрам соединения. Именно эти механизмы позволяют объединить на одной магистрали трафик с различными протоколами. Наконец, эти механизмы обеспечивают оптимальное распределение полосы пропускания между различными виртуальными каналами и эффективный захват ее неиспользуемой части, что позволяет избежать перегрузок сети вплоть до физического исчерпания ее пропускной способности. Благодаря этому АТМ-сети способны удовлетворить всем противоречивым требованиям, предъявляемым различными типами трафика и различными протоколами.
В сети АТМ весь трафик, относящийся к тому или иному виртуальному каналу, попадает на те и только те устройства и порты, которые связаны с этим каналом. При увеличении числа станций общий объем трафика, циркулирующего в сети, растет приблизительно линейным образом. Скажем, при десятикратном расширении сети общий трафик увеличивается также в 10 раз.