Смекни!
smekni.com

Исследование некоторых задач в алгебрах и пространствах программ (стр. 2 из 2)

Пусть u(x,t) - количество ошибок, обнаруженных в программе (системе) в момент времени t, а х - характеристика уровня ошибок. Рассмотрим модель обнаружения ошибок при отладке, представимая уравнением (см. также [7]): Lu+Tu=f, где T - оператор, определяющий первоначальный уровень ошибок в программе или их некоторую характеристику, L - некоторый линейный ограниченный оператор отладки, L:U®V, U,V - линейные нормированные пространства D(L) ÍU, R(L)ÍV.

Теорема 2. Если R(L)=V и для каждого uÎD(L) существует постоянная c такая, что

, то Lu+Tu=f имеет единственное решение uÎU.

Доказательство. Условия теоремы гарантируют существование непрерывного обратного оператора L-1, причем

. Тогда u=L-1(f-Tu). Для однородного уравнения:
. Отсюда следует, что
, т.е. u=0. Следовательно, неоднородное уравнение имеет единственное решение.

Пример 3. Пусть umax - максимальный уровень синтаксических ошибок в программе Р, u(t) - их оставшееся количество к моменту времени t. Исходя из модели du/dt+lumax=0, u(t0)=u0 можно заключить, что уровень ошибок убывает при l(c-t0) ¹ -1 (t0<c<T) по закону: u(t) = u0(1+ l(c-t))/(1+l(c-t0)).

Если задать дополнительно u(t*)=u*, (umax - неизвестная величина), то закон изменения уровня ошибок находится однозначно, так как: с=(u*t0-u0t*)/(lu*-lu0)-1/l.

Вопросы разрешимости некоторых уравнений Lx=y, где х - неизвестная программа, y - заданная программа, L - оператор, например, оптимизации, будут изложены в другой работе.

Список литературы

1. Алагич С., Арбиб М. Проектирование корректных структурированных программ. - М., Радио и связь, 1984.

2. Клини С.К. Представление событий в нервных сетях и конечных автоматах. - Автоматы, ИЛ, М., 1956.

3. Бондарчук В.Г. Системы уравнений в алгебре событий. - Журнал вычислительной математики и математической физики, N6, т.3, 1963.

4. Глушков В.М. О применении абстрактной теории автоматов для минимизации микропрограмм. - Изв. АН СССР, Технич. кибернетика, N1, 1964.

5. Казиев В.М. Дидактические алгоритмические единицы. - Информатика и образование, N5, 1991.

6. Холстед М. Начала науки о программах. - М., Финансы и статистика, 1981.

7. Казиев В.М. Один класс математических моделей переработки информации и некоторые его приложения. - Нелинейные эволюционные уравнения в прикладных задачах, Киев, 1991.