Смекни!
smekni.com

Исследование некоторых задач в алгебрах и пространствах программ (стр. 1 из 2)

КазиевВ.М.

Рассмотрим пару алгебр (A,B): алгебру X=<X,&,a(+),a{},{}a> событий - алгоритмических процедур (программ) заданную над алфавитом X={x1,x2,...,xn} и В-трехзначную алгебру логики (0,1,2 - неопределенность). В алгебре А определим двухместные операции конъюнкции и условной дизъюнкции и одноместную операцию итерации следующим образом: конъюнкция s1&s2 событий s1, s2 состоит из всех слов вида pq, pÎ s1, qÎ s2; a - дизъюнкция a(s1+s2) совпадает с s1(s2), если условие a истинно (ложно); итерация с постусловием {s}a состоит из пустого события s0=e и всевозможных слов вида p1p2...pk т.е.

, {s}a=sm, где sm - последний из степеней s, для которого условие a выполнено; итерация с предусловием a{s} определяется аналогично. В алгебре А задается событие называемое неопределенным и обозначаемое символом Æ. Элементарные события в А - события е, x1, x2,..., xn. Аксиомы алгебры А ниже рассмотрены. Все аксиомы алгебры B и правила вывода в ней сохраняются. Правила вывода, используемые в алгебре А включают правила вывода, принятые в программировании - см., например, [1]. Событие, получаемое применением конечного числа операций алгебры А над элементарными, называется регулярным.

Имеет место важная теорема Клини [2]: регулярные события и только они представимы в конечных автоматах.

Рассмотрим задачу построения алгоритма регуляризации во введенной паре алгебр (А,B). Алгоритм в укрупненных шагах состоит в следующем.

Шаг 1. Задается произвольное событие s=s0 s1 s2...sn+1, где si - событие номер i, начальное событие - s0, конечное - sn+1, остальные события - преобразователи и/или события - распознаватели.

Шаг 2. Составляется система уравнений алгебры событий А: записывается функция F события, его дерево D и дерево состояний определяющее все к путей выполнения :

, где Fi - функция ветви дерева состояний. Функция ветви дерева - композиция всех функций (событий) данной ветви; программная функция F - объединение всех функций ветвей дерева.

Шаг 3. Система уравнений с помощью подстановок и операций дизъюнкции и конъюнкции представляется в виде : X=XA+B, где X - событие, представленное заключительным состоянием sn+1,

.

Шаг 4. Находим решение системы. Используется теорема [3]: если характеристический граф матрицы А (орграф соединяющий ребрами вершины i и j только тогда, когда eÎaij) не содержит ни одного цикла, то система X=XA+B имеет единственное решение X=B{A}, которое регулярно при регулярных A, B. При решении системы эффективно преобразовывать уравнения, - как и при решении линейных алгебраических уравнений, например, брать дизъюнкцию событий, изменять порядок исключения событий и др.

Шаг 5. По условиям выполнимости событий находим регулярную форму этого решения. Используются аксиомы алгебры логики В и соотношения алгебры событий А, например, следующие (AB=A&B, ab=a&b,a(A) - условие выполнимости события А, Aa - проверка условия a после события А и для этого условия верны все аксиомы алгебры В,

- отрицание условия a):

Ae=eA=A,

ea=a(e)=a,

AÆ=ÆA=Æ,

2(A+B)=Æ,

a(b(A))=b,

A(BC)=(AB)C,

b(A+B)=(a(A)+

(B)),

a(b(A+B))=(ba(A))+(

(B)),

a(A+B)C=a(AC+BC),

Aa(B+C)=a(AB+AC),

a(AB)=a(A)Ba(B),

(AB)a=A(Ba),

A{B}a={BAa}A,

a({A}b)={Ab}b,

{A}a=a(e+A{A}a),

{a(A)}

(B)={A}
B,

a{A}a{A}=a{A},

{aa{A}}=a{A},

{A}a{A}a={A}a,

{{A}aa}={A}a,

{a(A)}={A}

,

{A}a+e=a{A},

Aa{A}=a{A}A={A}a.

Пример 1. Регуляризуем микропрограмму А деления с фиксированной запятой. Для простоты считаем, что числа неотрицательны, а операция не приводит к переполнению разрядной сетки компьютера фон - Неймановского типа, операционный автомат которого состоит из регистров R1, R2 сумматора R3 и счетчика сдвигов R4. Делимое храниться на R1, делитель - на R2, частное накапливается на R3. Введем обозначения: li - микрооперация сдвига регистра Ri влево (i=1,2,3); s-1ij - микрокоманда вычитания из содержимого регистра Rj содержимого регистра Ri; ai - условие заполненности регистра Ri; gi - условие отрицательности содержимого регистра Ri; pi - микрооперация занесения единицы в младший разряд Ri; si,j- микрокоманда добавления содержимого регистра Ri к содержимому Rj.

Выпишем систему уравнений, обозначив через xi - событие соответствующее каждому из 11 пунктов алгоритма деления (см., например, [3]):

Решим эту систему. После очевидных подстановок, вводя обозначения:

x=x3+x7+x10 ,

B=el3s-113,

A=

g3p2l2p4l3s-113+
g3l2p4l3s-113

получим уравнение X=XA+B, решение которого будет X=B{A} и после упрощений с помощью приведенных аксиом, заключительное событие S равно

s=x11l3s-113{g3(l2p4l3s13+p2 l2p4l3s13-1)}a4

2. Рассмотрим задачу нахождения оптимальных (например, в смысле операции, длины и т.д.) структурированных программ из заданного набора базовых процедур (некоторые из них - см. в [5]), а также построения грамматик для анализа структур из программных единиц. При решении этой задачи используются аксиомы алгебры А.

Пример 2. Дана программа Р, где А,В,С - процедуры, a,b - предикаты:

P=a(BA+CA)b(Ab{A}+e)=a(B+С)Ab(Ab{A}+e)=a(B+С)Ab({A}b+e)=a(B+С)Ab{A}=a(B+C){A}b=T.

Программа Т - более оптимальна и ее правильность доказываема формально.

Доказана теорема (доказательство не приводим из-за объема).

Теорема 1. Если R,A,S Î A, a,b,gÎB, A и S - коммутативны, то:

а)AX=Aa(R+SX)ÛAX=A{S}aR, б)Ag=Aa(b+Sg)ÛAg=A{S}ab,

в)Ag=Aa(b+S

)ÞAg=A{S2}ta(b+S
),t=a+Sa,

г)Ag=A{S2}tgÞAg=At(e+S2)g, g=a(b+S

), t=a+Sa.

Рассмотрим задачу исследования разрешимости в пространствах программ.

Пусть x=<X, Y, M, S> - программа, определенная на входном алфавите Х, выходном алфавите Y и состоящая из подпрограмм (процедур) М с логической схемой (структурой) S. Структуре S поставим в соответствие орграф: Вершины - подпрограммы, ребра - в соответствии со структурой их взаимодействий. Метрика r(x,y) в этом пространстве - сумма всех весов ребер орграфов программ не совпадающих при заданной структуре S или отклоняющихся от оптимальной структуры, т.е.

Аксиомы метрики проверяемы.

Отметим метризуемость пространства и по некоторым характеристикам качества программ Холстеда [6], а также с помощью понятия интеллектуальной работы программы, оцениваемой как разность энтропии до работы (статической формы программы) и после работы (динамической формы). У идеальной программы энтропия равна нулю. Отметим, что если ds/dt - общее изменение энтропии программного комплекса при отладке, ds1/dt - изменение энтропии за счет необратимых изменений структуры, потоков внутри комплекса (рассматриваемую как открытую систему), ds2/dt - изменение энтропии за счет усилий по отладке и тестированию, то справедливо уравнение Пригожина: ds/dt = ds1/dt + ds2/dt. Последовательность программ {xi}, сходится по схеме (структуре) к программе х (обозначим

), если r(xn,x)® 0, при n®¥, т.е. дерево программы xn при n®¥ стремится к дереву программы х. Последовательность {xi} сходится функционально к программе х (обозначим
), если F(xn)® F(x) при n®¥ (программная функция xn стремится к программной функции х). Нетрудно видеть, что из сходимости по схеме следует сходимость функциональная, но обратное неверно.

Пусть M = {x1, x2, ..., xn,...} - последовательность программ с общей функцией (эквивалентных функционально). На этом множестве рассмотрим множество операторов А преобразования (композиции, суперпозиции) программ. Последовательность {An} сходится к А функционально (по схеме, структуре), если верно: "xÎМ:

С точки зрения исследования существования, единственности оптимальной (в каком-то смысле) программы можно рассмотреть: операторы минимизации числа операндов; операторы минимизации числа типов операторов; операторы минимизации числа вызовов процедур; минимизации числа ошибок в программе; минимизации сложности (разных способов определения) и др. При исследовании программных систем важно рассматривать пространства векторов х=(х1,x2,...,xn), где xi - характеристика ошибок в программе или структурной связностипроцедур, ui - количество ошибок в i-ом модуле программного комплекса P(u)=P(u1,u2,...,un).