MULTIBUS I позволяет передать 8- и 16 разрядные данные и оперировать с адресами
длиной до 24 разрядов.
MULTIBUS II воспринимает 8-, 16- и 32-разрядные данные, а адреса длиной до 32
разрядов. Протоколы магистралей MULTIBUS I и II подробно описаны в документации
фирмы Intel, которую следует тщательно изучить перед использованием этих
магистралей в какой - либо системе.
4.2 MULTIBUS I
MULTIBUS I фирмы Intel представляет собой 16-разрядную многопроцессорную
систему, согласующуюся со стандартом IEEE 796.
4.3 Пример интерфейса магистрали MULTIBUS I
Один из способов организации взаимодействия между МП 80386 и магистралью
MULTIBUS I заключается в генерации всех сигналов MULTIBUS I c помощью
программируемых логических матриц (ПЛМ) и схем ТТЛ. Проще использовать
интерфейс, совместимый с МП 80286. Основные черты этого интерфейса описаны ниже.
Интерфейс магистрали MULTIBUS I состоит из совместимого с МП 80286 арбитра
магистрали 82288. Контроллер может работать как в режиме локальной магистрали,
так и в режиме MULTIBUS I; резистор на входе МВ схемы 82288, подключенный к
источнику питания, активизирует режим MULTIBUS I. Выходной сигнал MBEN
дешифратора адреса на ПЛМ служит сигналом выбора обеих микросхем 82288 и 828289.
Сигнал AEN # с выхода 82289 открывает выходы контроллера 82288.
Взаимодействие между процессором 80386 и этими двумя устройствами осуществляется
с помощью ПЛМ, в которые записаны программы генерации и преобразования
необходимых сигналов. Арбитр 82289 вместе с арбитрами магистрали других
вычислительных подсистем координирует управление магистралью MULTIBUS I,
обеспечивая управляющие сигналы, необходимые для получения доступа к ней.
В системе MULTIBUS I каждая вычислительная подсистема претендует на
использование общих ресурсов. Если подсистема запрашивает доступ к магистрали,
когда другая система уже использует магистраль, первая подсистема должна ожидать
ее освобождения. Логика арбитража магистрали управляет доступом к магистрали
всех подсистем. Каждая вычислительная подсистема имеет собственный арбитр
магистрали 82289. Арбитр подключает свой процессор к магистрали и разрешает
доступ к ней ведущим с более высоким или более низким приоритетом в соответствии
с заранее установленной схемой приоритетов.
Возможны два варианта процедуры управления занятием магистрали: с
последовательным и параллельным приоритетом. Схема последовательного приоритета
реализуется путем соединения цепочкой входов приоритета магистрали (BPRN #) и
выходов приоритета магистрали (BPRO #) всех арбитров магистрали в системе.
Задержка, возникающая при таком соединении, ограничивает число подключаемых
арбитров. Схема параллельного приоритета требует наличия внешнего арбитра,
который принимает входные сигналы BPRN # от всех арбитров магистрали и
возвращает активный сигнал BPRО # запрашивающему арбитру с максимальным
приоритетом. Максимальное число арбитров , участвующих в схеме с параллельным
приоритетом, определяется сложностью схемы дешифрации.
После завершения цикла MULTIBUS I арбитр, занимающий магистраль, либо продолжает
ее удерживать, либо освобождает с передачей другому арбитру. Процедура
освобождения магистрали может быть различной. Арбитр может освобождать
магистраль в конце каждого цикла, удерживать магистраль до тех пор пока не будет
затребована ведущим с более высоким приоритетом, или освобождать магистраль при
поступлении запроса от ведущего с любым приоритетом.
Система MULTIBUS I с 24 линиями адреса и 16 линиями данных. Адреса системы
расположены в диапазоне 256 кбайт (между F00000H и F3FFFFH), причем используются
все 24 линии. 16 линий данных представляют младшую половину (младшие 16
разрядов) 32разрядной шины данных МП 80386. Адресные разряды MULTIBUS I
нумеруются в шеснадцатеричной системе; А23-А0 В МП 80386 становятся ADR17# -
ADR0# в системе MULTIBUS I. Инвертирующие адресные фиксаторы поразрядно
преобразуют выходные сигналы адреса МП 80386 в адресные сигналы с низким
активным уровнем для магистрали MULTIBUS I.
Дешифратор адреса. Система MULTIBUS I обычно включает и общую, и локальную
память. Устройства ввода-вывода (УВВ) также могут быть расположены как на
локальной магистрали, так и на MULTIBUS I. Отсюда следует, что: 1) пространство
адресов МП 80386 должно быть разделено между MULTIBUS I и локальной магистралью
и 2) должен использоваться дешифратор адресов для выбора одной из двух
магистралей. Для выбора магистрали MULTIBUS I требуются два сигнала:
1. Сигнал разрешения MULTIBUS I (MBEN) служит сигналом выбора контроллера
магистрали 82288 и арбитра магистрали 82289 в схеме сопряжения с MULTIBUS I.
Другие выходы ПЛМ дешифратора служат для выбора памяти и УВВ на локальной
магистрали.
2. Для обеспечения 16-разрядного цикла магистрали процессору 80386 должен быть
возвращен активный сигнал размера шины BS16#. К уравнению ПЛМ, описывающему
условия возбуждения сигнала BS16#, могут быть добавлены дополнительные члены для
других устройств, требующих 16-разрядной шины.
Ресурсы ввода-вывода, подключенные к магистрали MULTIBUS I, могут быть
отображены на отдельное пространство адресов ввода-вывода, независимых от
физического расположения устройств на магистрали I, либо отображены на
пространство адресов памяти МП 80386. Адреса УВВ, отображенных на пространство
памяти, должны декодироваться для возбуждения правильных команд ввода-вывода.
Это декодирование должно осуществляться для всех обращений к памяти, попадающих
в область отображения адресов ввода-вывода.
Адресные фиксаторы и приемопередатчики данных. Адрес во всех циклах магистрали
должен фиксироваться, потому что по протоколу MULTIBUS I на адресных входах
должен удерживаться достоверный адрес по крайней мере 50 нс после того, как
команда MULTIBUS I становится пассивной. Сигнал разрешения адреса (AEN#) на
выходе арбитра магистрали 82289 становится активным, как только арбитр получает
управление магистралью MULTIBUS I. Сигнал AEN# действует как разрешающий для
фиксаторов MULTIBUS
Разряды данных MULTIBUS I нумеруются в шестнадцатеричной системе, так что D15-D0
превращается в DATF#-DAT0#. Инвертирующие факторы и приемопередатчики
вырабатывают низкий активный уровень для магистрали MULTIBUS I. Данные
фиксируются только в циклах записи. Во время цикла записи адресными фиксаторами
и фиксаторами - приемопередатчиками данных управляют входные сигналы ALE#, DEN и
DT/R# от контроллера 82288. В циклах чтения фиксаторы - приемопередатчики
управляются сигналом локальной магистрали RD#. Если при использовании сигнала
DEN за локальным циклом записи немедленно последует цикл чтения MULTIBUS I, на
локальной магистрали МП 80386 возникнет конфликтная ситуация.
4.4 Магистраль расширения ввода-вывода iSBX
Магистраль iSBX независима от типа процессора или платы. Каждый интерфейс
расширения непосредственно поддерживает до 8-разрядных портов ввода-вывода.
Посредством ведомых процессоров или процессоров с плавающей точкой
обеспечивается расширение адресных возможностей. Кроме того, каждый интерфейс
расширения можетпри необходимости поддерживать канал ПДП со скоростью передачи
до 2 Мслов/с
Магистраль iSBX включает два основных элемента: базовую плату и модуль
расширения. Базовая плата - это любая плата с одним или несколькими интерфейсами
расширения ввода-вывода (коннекторами), удовлетворяющими электрическим и
механическим требованиям спецификации Intel. Естественно, базовая плата всегда
является ведущим устройством, она генерирует все адреса, сигналы выбора и
команды.
Модуль расширения магистрали iSBX представляет собой небольшую
специализированную плату ввода-вывода, подключенную к базовой плате. Модуль
может иметь одинарную или двойную ширину. Назначение модуля расширения -
преобразование протокола основной магистрали в протокол конкретного устройства
ввода-вывода.
Расширение функций,реализуемых каждой системной платой, подключенной к
магистрали MULTIBUS I, повышает производительность системы, потому что для
доступа к таким резидентным функциям не требуется арбитраж магистрали.
4.5 Многоканальная магистраль
Многоканальная магистраль представляет собой специализированный электрический и
механический протокол, действующий как составная часть системы MULTIBUS I. Эта
магистраль предназначена для скоростной блочной пересылки данных между системой
MULTIBUS I и взаимосвязанными перефирийными устройствами. В тех случаях, когда
требуется пересылать группу байтов или слов, расположенных (или распологаемых)
по последовательным адресам, протокол блочной пересылки данных уменьшает
непроизводительные потери. Передача осуществляется в асинхронном режиме с
использованием протокола подтверждений и с проверкой четности, обеспечивающей
правильность передачи данных.
Улучшению характеристик системы MULTIBUS I способствует уменьшение влияния на ее
производительность оборудования пакетного типа. Потоки данных от пакетных
устройств могут использовать интерфейс общего назначения. Протокол
многоканальной магистрали специально приспособлен для пакетных пересылок
данных.Максимальный выигрыш в производительности получается при использовании
двухпортовой памяти с доступом как со стороны многоканальной магистрали, так и
со стороны интерфейса MULTIBUS I.
4.6 Магистраль локального расширения iLBX
Магистраль iLBX предназначена для непосредственных скоростных передач данных
между ведущими и ведомыми и обеспечивает: 1) максимум два ведущих на магистрали,
что упрощает процедуру арбитража; 2) асинхронный по отношению к передаче данных
арбитраж магистрали; 3) минимум два и максимум пять устройств, связанных с
магистралью; 4) ведомые устройства, определяемые как ресурсы памяти с байтовой
адресацией, и 5) ведомые устройства, функции которых непосредственно