Принципы арбитража в системе MULTIBUS позволяют медленным ведущим равноправно
конкурировать за захват магистрали. Однако после того, как модуль захватил
магистраль, скорость передачи определяется возможностями передающего и
принимающего модулей.
Основное назначение магистрали MULTIBUS в обеспечении канала для передачи данных
между модулями, подключенными к шине. Система позволяет использовать платы с
различными возможностями, изменять ширину шин данных и адресов ввода-вывода,
устанавливать атрибуты прерываний.
Для реализации мультипроцессорных возможностей системы, построенной на основе МП
80386, и для увеличения ее производительности разработана магистраль MULTIBUS
II. В новую архитектуру включена передача сообщений, способствующая повышению
производительности мультипроцессорной системы. При использовании передачи
сообщений все пересылки по магистрали выполняются с максимально возможной
скоростью пакетами 32-разрядных данных.
В дополнение к передаче сообщений модули платы MULTIBUS II обеспечивают
виртуальные прерывания, географическую адресацию и распределенный арбитраж. При
наличии виртуальных прерываний один процессор может выполнять запись в
специальные ячейки памяти другого процессора, что почти неограничено увеличивает
гибкость механизма прерываний.
Географическая адресация, реализуемая с помощью смонтированных на плате
регистров межкомпонентных соединений, обеспечивает пространство межкомпонентных
соединений для программных конфигураций законченных комплексных систем.
Распределенный арбитраж предоставляет модулям MULTIBUS II столько отдельных
уровней арбитража, сколько в системе имеется плат (или гнезд). В этом случае все
платы в системе имеют одинаковый приоритет относительно времени доступа к
магистрали, что предотвращает блокирование плат с низким приоритетом ведущими
платами высокой производительности.
Ключевым вопросом при построении систем на основе магистрали MULTIBUS является
нахождение оптимального соотношения между требуемыми и фактическими
характеристиками. Для каждого элемента характерно индивидуальное множество
присущих ему характеристик. Взаимодействие двух таких элементов ограничивается
множеством характеристик, которое определяется как пересечение множеств
характеристик обоих элементов. В некоторых случаях пересечение может быть
пустым, что приводит к принципиальной неработоспособности системы.
6. Электрическое питание
Современные устройства требуют хорошо стабилизированного постоянного напряжения.
Стабилизация питания может осуществляться в источнике питания или, как это имеет
место в системах S-100, на каждой плате.
Большинство компьютерных систем питается от источника постоянного напряжения 5 В
с выходным током от 1 до 5 А. Типичными значениями являются 1, 3, 4 и 5 А в
зависимости от системы. Некоторые системы потребляют ток 10 А. Часто источники
питания имеют также выход 12 В, 2 А для подключения дисководов.
7. Заключение
Под сопряжением понимается связь микропроцессора с внешним миром и его
собственными внутренними узлами. Чем большим уровнем интелекта обладает
устройство, тем большее внимание надо обращать на характеристики сопряжения.
Сопряжение относится к числу наиболее сложных аспектов разработки аппаратного
обеспечения. Именно здесь приходится принимать большинство компромиссов и именно
здесь можно получить максимальную экономию средств. В большинстве приложений
сигналы, обрабатываемые процессором, несовместимы с его характеристиками. В
простейшем случае может потребоваться преобразование напряжения сигнала в
стандарт ТТЛ 5 В. Несовместимое напряжение может легко исказить процесс
обработки сигналов. В других случаях могут потребоваться аналого - цифровые
преобразователи.