именно G будет LR-грамматикой, если из трех условий:
1: S=>aAw=>abw;
2: S=>yBx=>aby;
3: FIRST(w)=FIRST(y)
следует, что aAy=yBX.
В данном разделе мы кратко рассмотрим, как для каждой
LR-грамматики G можно построить детерминированный правый анализа-
тор, который ведет себя следующим образом.
Прежде всего, этот анализатор строится по пополненной грам-
матике G'. Ведет он себя также, как анализатор типа "пере-
нос-свертка", за исключением того, что после каждого символа
грамматики в магазин будет записываться специальный информацион-
ный символ, называемый LR(k)-таблицей, которые могут определить,
что нужно делать на очередном шаге-свертку или перенос, и в слу-
чае свертки - номер правила.
┌──────────┬─────────────────────┬──────────────────────┐
│состояния │ действие │ переход │
├──────────┼─────────────────────┼──────────────────────┤
│ │ a b e │ S a b │
│ │ │ │
│ │ │ │
│ T0 │ 2 X 2 │ T1 X X │
│ │ │ │
│ Т1 │ S X A │ X T2 X │
│ │ │ │
│ T2 │ 2 2 X │ T3 X X │
│ │ │ │
│ T3 │ S S X │ X T4 T5│
│ │ │ │
│ T4 │ 2 2 X │ T6 X X │
│ │ │ │
│ T5 │ 1 X 1 │ X X X │
│ │ │ │
│ T6 │ S S X │ X T4 T7│
│ │ │ │
│ T7 │ 1 1 X │ X X X │
└──────────┴─────────────────────┴──────────────────────┘
Рис. LR(1) анализатор для грамматики G (i-свертка,при кото-
рой применено i-е правило, S-перенос, A-допуск, X-ошибка.
Возьмем для примера грамматику G. Ee правила:
1:S->SaSb
2:S->e
и правый вывод S->SaSb->SaSaSbb->SaSabb->Saabb->aabb.
Это LR(1)-грамматика.
Пополненная грамматика состоит G' правил:
0:S'->S
1:S ->SaSb
2:S ->e
LR(1)-анализатор для грамматики G приведен на Рис.
LR(k)-анализатор для КС-грамматики G - это множество строк
большой таблицы, каждая строка которой называется LR(k)-таблицей.
Т0 выделяется в качестве начальной LR(k)-таблицы. Каждая из
таблиц состоит из двух функций - функции действия f и функции пе-
реходов g:
(1) Аргументом функции действия f служит аванцепочка, а
соответствующее значение функции f - один из символов "действий":
перенос, свертка i, ошибка или допуск;
(2) Аргументом функции переходов g служит символ X, принад-
лежащий N+E, а соответствующее значение g(X)-либо имя некоторой
LR(k)-таблицы, либо ошибка.
LR-анализатор ведет себя также, как алгоритм типа "пере-
нос-свертка", используя в процессе работы магазин, входную и вы-
ходную ленты. Вначале магазин содержит начальную таблицу Т0 и ни-
чего больше. На входной ленте находится анализируемая цепочка, а
выходная лента вначале пустая. Если предположить, что надо разоб-
рать входную цепочку aabb ,то начальной конфигурацией анализато-
ра будет (T0,aabb,e). Далее разбор осуществляется по следующему
алгоритму.
LR(k)-алгоритм разбора
Вход. Множество LR(k) таблиц для грамматики G с начальной
таблицей Т0 и входная цепочка z , которую надо разобрать.
Выход. Если z+ L(G), то правый разбор цепочки z в граммати-
ке, в противном случае сигнал об ошибке.
Метод. Выполнять шаги (1) и (2) до тех пор, пока не будет
допущена входная цепочка или не встретится сигнал об ошибке. В
случае допуска цепочка на выходной ленте представляет собой пра-
вый разбор цепочки z.
(1) Определяется аванцепочка u ,состоящая из k очередных
входных символов (или менее чем k символов ,если обрабатывается
конец входной цепочки)
(2) Функция действия f таблицы ,расположенной наверху мага-
зина, применяется к аванцепочке u.
(а) Если f(u) =перенос, то следующий входной символ, скажем
a ,переносится со входа в магазин. К a применяется функция пере-
ходов g верхней таблицы магазина и определяется новая таблица,ко-
торую надо поместиь наверху магазина. После этого вернуться к ша-
гу (1). Если следующего входного символа нет или значение g(a) не
определено, остановиться и выдать сигнал об ошибке.
(б) Если f(u) свертка i и A->a-правило с номером i , то из
верхней части магазина устраняется 2|a| символов и на выходной
ленте записывается номер правила i. Наверху магазина оказывается
тргда новая таблица T', и ее функция переходов применяется к А
для определения следующей таблицы, которую надо поместить навер-
ху магазина. Помещаем А и эту новую таблицу наверху магазина и
переходим к шагу (1).
(в) Если f(u)= ошибка , разбор прекращается (на практике на-
до перейти к процедуре исправления ошибок).
(г) Если f(u) =допуск, остановиться и обьявить цепочку, за-
писанную на выходной ленте, правым разбором первоначальной вход-
ной цепочки.
Конец работы алгоритма.
G является LR -грамматикой тогда и только тогда , когда для
нее можно построить LR(k)-анализатор. Она также будет LR-грамма-
тикой, если просмотрев только часть кроны дерева вывода в этой
грамматике, расположенную слева от данной внутренней вершины, и
часть кроны , выведенную из нее, а также следующие k терми-
нальных символов, можно установить, какое правило было применено
к этой вершине.
Определение. Допустим, что S->aAw->abw- правый вывод в грам-
матике. Назовем цепочку g АКТИВНЫМ ПРЕФИКСОМ грамматики, если
gпрефикс цепочки ab, т.е g- префикс некоторой правовыводимой це-
почки, не выходящие за правый конец ее основы.
Ядро анализатора составляют таблицы. Для LR(k)-грамматики
каждая таблица соответствует некоторому активному префиксу. Таб-
лица, соответствующая активному префиксу g, для данной аванцепоч-
ки. состоящей из k символов, сообщает о том достигнут ли правый-
конец основы. Если да, то она сообщает также какова эта основа и
какое правило надо применить для ее свертки.
LR(k)-условие говорит о том, что основу правовыводимой це-
почки можо определить неоднозначно, если известен весь отрезок
этой цепочки слева от основы, а также k очередных входных симво-
лов. Поэтому не очевидно, что основу всегда можно определить,
располагая только фиксированным количеством информации о цепочке,
предшествующей основе. Поэтому таблицы должны содержать достаточ-
но информации, чтобы по таблице, соответствующей ab, можно было
вычислить таблицу для aA, если aAw->abw.
Определение. Пусть G - КС-грамматика. Будем называть
[A->b1*b2,u] LR-ситуацией, если A->b1b2-правило из P и u принад-
лежит входной цепочке.
Определение. Пусть G-КС-грамматика. g-ее активный префикс.
Тогда V(g) -множество LR(k)-ситуаций, допустимых для g.
Чтобы помочь анализатору принять правильное решение, в нуж-
ных ячейках магазина будут находиться LR-таблицы, содержащие
необходимую информацию, извлеченную из соответствующего множес-
тва ситуаций. Следовательно, построение правого анализатора сос-
тоит в нахождении LR-таблиц, соответствующих этим ситуациям.
На первый взгляд кажется, что при реализации анализаторов
придется помещать в магазин большие таблицы. Этого можно избе-
жать следующим образом:
(1) Поместить в память по одному экземпляру каждой таблицы,
а в магазине заменить сами таблицы указателями на их место в па-
мяти;
(2) Так как в таблицах есть ссылки на другие таблицы, вмес-
то имен таблиц можно использовать указатели.
Наличие в магазине символов грамматики излишне и на практи-
ке их можно туда не записывать.
ЛЕКЦИЯ 7
МП-АВТОМАТЫ
Изучая конечные автоматы, мы изучили теоpию, охватывающую
пpоблемы pаспознования. При использовании конечных автоматов в
пpактических задачах такие аспекты обpаботки цепочек как выходы
из цепочек и обpаботка значений pешались с помощью пеpеходных
пpоцедуp, задаваемых в зависимости от конкpетного случая. Так как
почти всегда пpоцедуpы могли быть описаны коpотко и пpосто, то мы
сделали вывод: теоpия конечных pаспознований является адекватной
теоpетической базой для pазpаботки конечных пpоцессоpов.
В этом пункте мы pассмотpим pаспознование входных цепочек с
помощью МП-автоматов. В отличие от конечного pаспознавателя для
МП-pаспознавателя стpоить соответствующие pасшиpения достаточно
тpудно, поэтому теоpия pаспознования КС-гpамматик сама по себе не
стpоит адекватной теоpии для постpоения компилятоpов.
Все методы тpансляции, котоpые будут pассмотpены ниже, осно-
вываются на технике, в котоpой пpоцесс обpаботки КС-языка опpеде-
ляется в теpминах обpаботки каждоого отдельного пpавила соответ-
ствующей гpамматике. Для описания пpоцесса обpаботки , основанно-
го на этой технике , обычно используется пpилагательное "синтак-
сически тpанслиpуемый". Синтаксически упpавляемые методы в дан-
ном КП основываются на математическом понятии "тpанслиpующей
гpамматики" и понятия "атpибутной гpамматики".
Тpанслиpующей гpамматикой или гpамматикой пеpевода называет-
ся КС-гpамматика, множество теpминальных символов котоpого pазби-
то на множество входных символов и множество символов действия.
Цепочки языка, опpеделяемого тpанслиpующей гpамматикой, называют-
ся последовательностью актов.
Атpибутная тpанслиpующая гpамматика - это тpанслиpующая
гpамматика, к котоpой добавляются следующие опpеделения.
1) Каждый входной символ, символ действия или нетеpминал
имеет конечное множество атpибутов, и каждый атpибут имеет (воз-
можно бесконечное) множество допустимых значений;