Смекни!
smekni.com

Проектирование трансляторов (стр. 9 из 31)

именно G будет LR-грамматикой, если из трех условий:

1: S=>aAw=>abw;

2: S=>yBx=>aby;

3: FIRST(w)=FIRST(y)

следует, что aAy=yBX.

В данном разделе мы кратко рассмотрим, как для каждой

LR-грамматики G можно построить детерминированный правый анализа-

тор, который ведет себя следующим образом.

Прежде всего, этот анализатор строится по пополненной грам-

матике G'. Ведет он себя также, как анализатор типа "пере-

нос-свертка", за исключением того, что после каждого символа

грамматики в магазин будет записываться специальный информацион-

ный символ, называемый LR(k)-таблицей, которые могут определить,

что нужно делать на очередном шаге-свертку или перенос, и в слу-

чае свертки - номер правила.

┌──────────┬─────────────────────┬──────────────────────┐

│состояния │ действие │ переход │

├──────────┼─────────────────────┼──────────────────────┤

│ │ a b e │ S a b │

│ │ │ │

│ │ │ │

│ T0 │ 2 X 2 │ T1 X X │

│ │ │ │

│ Т1 │ S X A │ X T2 X │

│ │ │ │

│ T2 │ 2 2 X │ T3 X X │

│ │ │ │

│ T3 │ S S X │ X T4 T5│

│ │ │ │

│ T4 │ 2 2 X │ T6 X X │

│ │ │ │

│ T5 │ 1 X 1 │ X X X │

│ │ │ │

│ T6 │ S S X │ X T4 T7│

│ │ │ │

│ T7 │ 1 1 X │ X X X │

└──────────┴─────────────────────┴──────────────────────┘

Рис. LR(1) анализатор для грамматики G (i-свертка,при кото-

рой применено i-е правило, S-перенос, A-допуск, X-ошибка.

Возьмем для примера грамматику G. Ee правила:

1:S->SaSb

2:S->e

и правый вывод S->SaSb->SaSaSbb->SaSabb->Saabb->aabb.

Это LR(1)-грамматика.

Пополненная грамматика состоит G' правил:

0:S'->S

1:S ->SaSb

2:S ->e

LR(1)-анализатор для грамматики G приведен на Рис.

LR(k)-анализатор для КС-грамматики G - это множество строк

большой таблицы, каждая строка которой называется LR(k)-таблицей.

Т0 выделяется в качестве начальной LR(k)-таблицы. Каждая из

таблиц состоит из двух функций - функции действия f и функции пе-

реходов g:

(1) Аргументом функции действия f служит аванцепочка, а

соответствующее значение функции f - один из символов "действий":

перенос, свертка i, ошибка или допуск;

(2) Аргументом функции переходов g служит символ X, принад-

лежащий N+E, а соответствующее значение g(X)-либо имя некоторой

LR(k)-таблицы, либо ошибка.

LR-анализатор ведет себя также, как алгоритм типа "пере-

нос-свертка", используя в процессе работы магазин, входную и вы-

ходную ленты. Вначале магазин содержит начальную таблицу Т0 и ни-

чего больше. На входной ленте находится анализируемая цепочка, а

выходная лента вначале пустая. Если предположить, что надо разоб-

рать входную цепочку aabb ,то начальной конфигурацией анализато-

ра будет (T0,aabb,e). Далее разбор осуществляется по следующему

алгоритму.

LR(k)-алгоритм разбора

Вход. Множество LR(k) таблиц для грамматики G с начальной

таблицей Т0 и входная цепочка z , которую надо разобрать.

Выход. Если z+ L(G), то правый разбор цепочки z в граммати-

ке, в противном случае сигнал об ошибке.

Метод. Выполнять шаги (1) и (2) до тех пор, пока не будет

допущена входная цепочка или не встретится сигнал об ошибке. В

случае допуска цепочка на выходной ленте представляет собой пра-

вый разбор цепочки z.

(1) Определяется аванцепочка u ,состоящая из k очередных

входных символов (или менее чем k символов ,если обрабатывается

конец входной цепочки)

(2) Функция действия f таблицы ,расположенной наверху мага-

зина, применяется к аванцепочке u.

(а) Если f(u) =перенос, то следующий входной символ, скажем

a ,переносится со входа в магазин. К a применяется функция пере-

ходов g верхней таблицы магазина и определяется новая таблица,ко-

торую надо поместиь наверху магазина. После этого вернуться к ша-

гу (1). Если следующего входного символа нет или значение g(a) не

определено, остановиться и выдать сигнал об ошибке.

(б) Если f(u) свертка i и A->a-правило с номером i , то из

верхней части магазина устраняется 2|a| символов и на выходной

ленте записывается номер правила i. Наверху магазина оказывается

тргда новая таблица T', и ее функция переходов применяется к А

для определения следующей таблицы, которую надо поместить навер-

ху магазина. Помещаем А и эту новую таблицу наверху магазина и

переходим к шагу (1).

(в) Если f(u)= ошибка , разбор прекращается (на практике на-

до перейти к процедуре исправления ошибок).

(г) Если f(u) =допуск, остановиться и обьявить цепочку, за-

писанную на выходной ленте, правым разбором первоначальной вход-

ной цепочки.

Конец работы алгоритма.

G является LR -грамматикой тогда и только тогда , когда для

нее можно построить LR(k)-анализатор. Она также будет LR-грамма-

тикой, если просмотрев только часть кроны дерева вывода в этой

грамматике, расположенную слева от данной внутренней вершины, и

часть кроны , выведенную из нее, а также следующие k терми-

нальных символов, можно установить, какое правило было применено

к этой вершине.

Определение. Допустим, что S->aAw->abw- правый вывод в грам-

матике. Назовем цепочку g АКТИВНЫМ ПРЕФИКСОМ грамматики, если

gпрефикс цепочки ab, т.е g- префикс некоторой правовыводимой це-

почки, не выходящие за правый конец ее основы.

Ядро анализатора составляют таблицы. Для LR(k)-грамматики

каждая таблица соответствует некоторому активному префиксу. Таб-

лица, соответствующая активному префиксу g, для данной аванцепоч-

ки. состоящей из k символов, сообщает о том достигнут ли правый-

конец основы. Если да, то она сообщает также какова эта основа и

какое правило надо применить для ее свертки.

LR(k)-условие говорит о том, что основу правовыводимой це-

почки можо определить неоднозначно, если известен весь отрезок

этой цепочки слева от основы, а также k очередных входных симво-

лов. Поэтому не очевидно, что основу всегда можно определить,

располагая только фиксированным количеством информации о цепочке,

предшествующей основе. Поэтому таблицы должны содержать достаточ-

но информации, чтобы по таблице, соответствующей ab, можно было

вычислить таблицу для aA, если aAw->abw.

Определение. Пусть G - КС-грамматика. Будем называть

[A->b1*b2,u] LR-ситуацией, если A->b1b2-правило из P и u принад-

лежит входной цепочке.

Определение. Пусть G-КС-грамматика. g-ее активный префикс.

Тогда V(g) -множество LR(k)-ситуаций, допустимых для g.

Чтобы помочь анализатору принять правильное решение, в нуж-

ных ячейках магазина будут находиться LR-таблицы, содержащие

необходимую информацию, извлеченную из соответствующего множес-

тва ситуаций. Следовательно, построение правого анализатора сос-

тоит в нахождении LR-таблиц, соответствующих этим ситуациям.

На первый взгляд кажется, что при реализации анализаторов

придется помещать в магазин большие таблицы. Этого можно избе-

жать следующим образом:

(1) Поместить в память по одному экземпляру каждой таблицы,

а в магазине заменить сами таблицы указателями на их место в па-

мяти;

(2) Так как в таблицах есть ссылки на другие таблицы, вмес-

то имен таблиц можно использовать указатели.

Наличие в магазине символов грамматики излишне и на практи-

ке их можно туда не записывать.

ЛЕКЦИЯ 7

МП-АВТОМАТЫ

Изучая конечные автоматы, мы изучили теоpию, охватывающую

пpоблемы pаспознования. При использовании конечных автоматов в

пpактических задачах такие аспекты обpаботки цепочек как выходы

из цепочек и обpаботка значений pешались с помощью пеpеходных

пpоцедуp, задаваемых в зависимости от конкpетного случая. Так как

почти всегда пpоцедуpы могли быть описаны коpотко и пpосто, то мы

сделали вывод: теоpия конечных pаспознований является адекватной

теоpетической базой для pазpаботки конечных пpоцессоpов.

В этом пункте мы pассмотpим pаспознование входных цепочек с

помощью МП-автоматов. В отличие от конечного pаспознавателя для

МП-pаспознавателя стpоить соответствующие pасшиpения достаточно

тpудно, поэтому теоpия pаспознования КС-гpамматик сама по себе не

стpоит адекватной теоpии для постpоения компилятоpов.

Все методы тpансляции, котоpые будут pассмотpены ниже, осно-

вываются на технике, в котоpой пpоцесс обpаботки КС-языка опpеде-

ляется в теpминах обpаботки каждоого отдельного пpавила соответ-

ствующей гpамматике. Для описания пpоцесса обpаботки , основанно-

го на этой технике , обычно используется пpилагательное "синтак-

сически тpанслиpуемый". Синтаксически упpавляемые методы в дан-

ном КП основываются на математическом понятии "тpанслиpующей

гpамматики" и понятия "атpибутной гpамматики".

Тpанслиpующей гpамматикой или гpамматикой пеpевода называет-

ся КС-гpамматика, множество теpминальных символов котоpого pазби-

то на множество входных символов и множество символов действия.

Цепочки языка, опpеделяемого тpанслиpующей гpамматикой, называют-

ся последовательностью актов.

Атpибутная тpанслиpующая гpамматика - это тpанслиpующая

гpамматика, к котоpой добавляются следующие опpеделения.

1) Каждый входной символ, символ действия или нетеpминал

имеет конечное множество атpибутов, и каждый атpибут имеет (воз-

можно бесконечное) множество допустимых значений;