Методы первой категории применимы почти к любому алгебраическому языку - ФОРТРАНу, АЛГОЛу, PL/1 и.т.д.
На практике используется весьма широкий набор машинно-независимых оптимизирующих преобразований, что связано с большим разнообразием неоптимальностей. К ним относятся:
- разгрузка участков повторяемости;
- упрощение действий;
- реализация действий;
- чистка программы;
- экономия памяти;
- сокращение программы.
4.1. Разгрузка участков повторяемости
Такое название получил способ оптимизации, состоящий в вынесении вычислений из многократно проводимых (исполняемых ) участков программы на участки программы , редко проходимые.
К этому виду преобразований относятся различные чистки зон, тел циклов и тел рекурсивных процедур, когда инвариантные (по результату выполнения) в соответствующих участках повторяемости выражения, линейные компоненты (т. е. гамаки, обязательно исполняемые при каждом прохождении участка повторяемости) выносятся из него и размещаются перед входом в участок повторяемости - чистка вверх,- или когда уничтожающие свои предыдущие результаты линейные компоненты или группы линейных компонент участка повторяемости выносятся из него и размещаются за выходы из участка повторяемости - чистка вниз.
При чистке вверх вынесенные вычисления образуют новый непосредственный обязательный предшественник участка повторяемости, а при чистке вниз - непосредственный обязательный преемник участка повторяемости.
Обычно выносятся только такие выражения и линейные фрагменты программы, которые обязательно исполняются при каждом прохождении разгружаемого участка повторяемости.
Примеры.
а) Чистка вниз преобразует цикл
для K:=1, K+1 пока K<=100
цикл
начало
X:=X*K;
если Z>0 то Y:=sin(X);
иначе A[I]:=X+2;
конец
к виду
для K:=1, K+1 пока K<=100
цикл X:=X*K;
если Z>0 то Y:=sin(X);
иначе A[I]:=X+2;
б) Чистка вверх преобразует цикл
для K:=1, K+1 пока K<=100
цикл
начало
если Z>0 то Y:=1;
иначе Y:=Z+2;
X[K]:=X[K] - Y; конец
к виду
если Z>0 то Y:=1;
иначе Y:=Z+2;
для K:=1, K+1 пока K<=100
цикл X[K]:=X[K] - Y;
Примером чистки тела рекурсивной функции может быть следующий:
тело рекурсивной функции
цел функция Ф(N)
начало
целые Z,W;
W:=1;
если X>0 то W:=Y;
если N<=0 то Ф:=1
иначе
начало
Z:=N-W; Ф:=Z*Ф(Z) конец
конец
содержит два инвариантных гамака, в результате вынесения которых может быть получена следующая функция:
цел функция Ф(N)
начало
целое N;
цел функция F(M)
начало
целое Z;
если M<=0 то F:=1;
иначе
начало
Z:=M-W; F:=Z*F(Z) конец
конец
W:=1;
если X>0 то W:=Y;
Ф:=F(N); конец;
В группу разгрузок участков повторяемости также входят и различные преобразования, которые осуществляют перемещение гамака по пути, ведущему к месту использования его результатов. При таком преобразовании в отличие от чисток гамак остается в тех же зонах, циклах и процедурах.
Например, с помощью этих преобразований фрагмент
для K:=1, K+1 пока K<=100
цикл
начало
N:=A[K];
если N>0 то переход на L; N:=N*N;
L: если Z=0 то ВЫВОД(N); конец
N:=100;
может быть преобразован к виду:
для K:=1, K+1 пока K<=100
цикл
если Z=0 то
начало
N:=A[K];
если N>0 то переход на L; N:=N*N;
L: ВЫВОД(N); конец;
N:=100;
4.1.1 Сдвиг инвариантных операторов
Рассмотрим подробнее преобразование сдвига инвариантных операторов, входящее в группу преобразований по разгрузке участков повторяемости.
Оператор инвариантен и может быть вынесен из блока, если он удовлетворяет следующим условиям:
1) сдвиг оператора не приводит к тому, что результат сдвигаемого оператора перемещается через оператор, в котором результат используется.
Например, для блока
(mi) * A,B
.
.
.
(mk) := C,(mi)
если ни A, ни B не определяются в области, то оператор mi может быть сдвинут вниз, но не может быть поставлен после оператора mk.
2) сдвиг оператора не приводит к тому, что между определением переменной и ее использованием в качестве операнда появляется новый оператор, присваивающий этой переменной другое значение. Например, для блока
(mi) := A,1
.
.
(mj) := A,10
.
.
(mk) := C,A
если больше никакой оператор после mj не присваивает значение переменной A, то оператор mj может быть сдвинут вниз, но не может быть поставлен после оператора mk, операторами mi, а также вверх, но не выше оператора, использующего значение переменной A, присвоенное оператором mi.
3) сдвиг оператора не нарушает связи между сдвигаемым оператором и оператором, использующим результат сдвигаемого в качестве операнда.
Таким образом, оператор инвариантен в области, если его операнды не зависят от места определения переменных в данной области.
Как уже отмечалось, сдвиг инвариантного оператора из тела цикла сокращает время выполнения программы. Особенность рассматриваемого метода заключается в том, что оператор сдвигается из блока во всех случаях, когда он может быть сдвинут независимо от того, находится он внутри цикла или нет. Ухудшение программы произойти не может.
Необходимо также отметить, что перед сдвигом инвариантных операторов нужно устранить идентичные операторы (об этом речь пойдет позже), так как они могут оказаться препятствием для
сдвига операторов.
Рассмотрим условия, достаточные для сдвига операторов
I. Сдвиг оператора, не являющегося оператором присваивания, из области назад (на его входные пути) производится, если операнды оператора не зависят от места определения переменных в области, т.е.:
1) mi - идентификаторы, используемые в качестве аргумента оператора, не определены в блоке ни одним предшествующим оператором;
2) программные переменные оператора не определены в области.
Если оба эти условия выполняются, то операнды оператора не зависят от места определения переменных в области.
II. Сдвиг оператора присваивания, из области назад (на его входные пути) производится, если:
1) mi - идентификаторы, используемые в качестве аргумента оператора, не определены в блоке ни одним предшествующим оператором;
2) программные переменные, используемые в качестве операнда оператора не определены в области;
3) блок является артикуляционным, т.е. лежит на пересечении всех входных или всех выходных путей сильно связанной области;
4) не существует другого определения или использования программной переменной на любом пути от входа в область до этого определения.
III. Сдвиг оператора, не являющегося оператором присваивания, из области вперед (на его выходные пути) производится, если:
1) mi - идентификаторы, используемые в качестве аргумента оператора, не переопределяются ни на одном пути между оператором и точкой выхода из области;
2) программные переменные, используемые в качестве аргумента оператора не переопределяются ни на одном пути между оператором и точкой выхода из области;
3) mi - указатель, являющийся результатом действия оператора, не используется на пути между оператором и концом блока.
IV. Сдвиг оператора присваивания, из области назад (на его входные пути) производится, если:
1) mi - идентификаторы, используемые в качестве аргумента оператора, не переопределяются ни на одном пути между оператором и точкой выхода из области;
2) программные переменные, используемые в качестве аргумента оператора не переопределяются ни на одном пути между оператором и точкой выхода из области;
3) блок является артикуляционным пунктом области;
4) не существует другого определения
программной переменной ни на одном пути между определением и
точкой выхода из области;
5) программная переменная не используется в области.
4.1.2. Сокращение глубины операции
Сокращение глубины операции - процедура выноса за пределы цикла операторов, аргументы которых являются функциями рекурсивно определяемых переменных, и замена их внутри цикла простыми рекурсивными операторами присваивания, аргументы которых не зависят от других переменных.
Смысл этой операции в том, что она позволяет выносить из цикла даже те операторы, операнды которых зависят от управляющей переменной цикла. В отличие от сдвига инвариантных операторов при сокращении глубины операции сдвигаемые операторы заменяются более простыми и быстрее выполняемыми операторами
Приведем пример сокращения глубины операции применительно к оператору t4:=K*10+I из n-го блока :
n-й блок
L:t4:=K*10+I t5:=t6+K z(t2):=z(t2)+x(t4)+y(t5) K:=K+1
переход на L
в результате выполнения этой операции оператор t4:=K*10+I сдвигается в (n-1)-й блок, а в n-м блоке он заменяется оператором t4:=t4+10:
(n-1)-й блок
. . .
t4:=K*10+I
n-й блок
L: z(t2):=z(t2)+x(t4)+y(t5)
K:=K+1 t4:=t4+10 t5:=t6+K переход на L
4.2. Упрощение действий
Данный способ оптимизации ориентирован на улучшение программы за счет замены групп (как правило, удаленных друг от друга) вычислений на группу вычислений, дающих тот же результат с точки зрения всей программы, но имеющих меньшую сложность.
4.2.1. Удаление индуктивных переменных и выражений
Ряд преобразований этого типа связан с так называемыми индуктивными (или линейно-рекурсивными) вычислениями в участке повторяемости программы, т. е. теми, значения которых регулярно измененяются от повторения к повторению.) Такими преобразованиями являются удаление индуктивных переменных , которое означает замену нескольких индуктивных переменных цикла одной индуктивной переменной , а также удаление индуктивных выражений из цикла.
Например, применение указанных преобразований переводит фрагмент
для I:=1, I+1 пока I<100
цикл
начало
K:=I+J; A[K]:= A[K]+1 конец;
K:=10;
во фрагмент
I:=1;
для K:=I+J, K+1 пока K<100+J
цикл
начало
A[K]:= A[K]+1 конец;
K:=10;
Здесь I,K - индуктивные переменные. В данном случае из цикла удалено индуктивное выражение K:=I+J.
4.2.2. Замена сложных операций на более простые
Весьма важным преобразованием из этой группы является понижение силы операций, заменяющее в индуктивных вычислениях сложные операции на более простые; например, возведение в степень или деление заменяется умножением ( например, выражение Х/4.О заменяется на выражение Х* О.25), а умножение - сложением.