Смекни!
smekni.com

Оптимизация программ (стр. 3 из 4)

Например, применение этого преобразования позволяет пере­ходить от цикла

для K:=1, K+1 пока K<=100

цикл V:=(K-1)*N+I

к более эффективно работающему фрагменту:

V:=I;

для K:=1, K+1 пока K<=100

цикл

начало A[V]:=A[V]+1;

V:=V+N конец

Замена сложных операций на более простые не всегда приво­дит к оптимизации, на самом деле это может даже привести к за­медлению, например для программ с циклами, состоящими из нескольких частей, из которых лишь немногие выполняются на каждом шаге цикла.

4.2.3. Исключение избыточных выражений

В группу преобразований по упрощению действий входят так­же исключение избыточных (лишних) выражений. Оно заключается в замене вхождений выражений на переменную, значение которой совпадает со значением выражения.

Например, эта операция осуществляет переход от фрагмента

если B>0 то

начало

A:=A+2; X:=A*B+C; конец

иначе Y:=A*B+D;

Z:= A*B;

к фрагменту

если B>0 то

начало

A:=A+2; W:=A*B; X:=W+C; конец

иначе начало

W:=A*B; Y:=W+D; конец;

Z=W;

4.2.4. Прочие преобразования

В эту же группу входит

экономия общих подвыражений, заменяющая, например, опера­тор

X:=(A+B)*(A+B+C)/(A+B+E) на фрагмент

Y:=A+B; X:=Y*(Y+C)/(Y+E),

а также такие преобразования, как втягивание вычисления параметров в процедуру, упрощение подстановки параметра-масси­ва, перестройки условных операторов (типа замены оператора

если X>0 && Y<2 то Z:=1

на оператор

если X>0 то начало если Y<2 то Z:=1 конец),

удаление копирований (в частности, заменяющее пересылку значе-

ний массива на пересылку его указателя), другие различные

способы перестройки структуры информационных объектов в за-

висимости от характера их использования и с целью сокращения

времени работы с объектами; различные способы реализации пере-

менных через быстрые регистры, замена рекурсии на циклы .

Другие оптимизирующие преобразования, упрощающие

действия,- это преобразования по объединению и по расчленению

циклов, по перестановке заголовков циклов.

4.3. Реализация действий

Это способ повышения качества программы за счет выполне­ния определенных ее вычислений на этапе трансляции.

Набор преобразований данного типа включает в себя следую­щие оптимизации:

константные действия (подстановка или свертка констант), когда происходит выполнение операций над константами;

распроцедуривание - открытая подстановка тела процедуры на место ее вызова;

ликвидация константных распознавателей - замена условного

оператора на одну из его ветвей, если его выбирающее (услов­ное) выражение имеет константное значение.

Реализация действий осуществляется также при

- втягивании констант, когда выражения, имеющие тождест­венно константные значения, заменяются на эти значения; при аналитических преобразованиях ( например, заменяющих Е*1 на Е или 0*Е на 0, где Е - произвольное подвыражение);

- отождествлении ( или втягивании уникальных), которое удаляет из программы оператор-пересылку вида X:=Y, где X и Y - переменные, заменяя либо вхождение X на Y - втягивание вверх (назад) - например, фрагмент Y:=F(W);X:=Y; заменяется на X:=F(W), либо вхождения Y на X - втягивание вниз (вперед) - например, X:=Y; если Z>0 то W:=Y+1 иначе W:=Y+2 заменяется на фрагмент если Z>0 то W:=X+1 иначе W:=X+2.

4.3.1. Подстановка (свертка)

Операции, операнды которых известны во время компиляции, нет необходимости выполнять во время счета.

Подстановка (свертка) - это замена переменной или mi-идентификатора результата заданной или вычисленной констан­той, причем эта замена производится во время трансляции, а не в процессе решения.

Свертка главным образом применяется к арифметическим опе­раторам +,-,*,/, т.к. они наиболее часто используются в исход­ной программе.

Например, для линейного участка

А:= 1+1

А:= 3

В:= 7+А,

представленного на промежуточном языке в виде триад:

(1) + 1,1 (2) := (1), А

(3) := 3,А (4) + 7,(3)

(5) := (4),В

1-ю триаду можно вычислить во время компиляции и заменить на результирующую константу, аналогично можно вычислить 4-ю триаду

.

Получается следующий результат свертки:

(1) := 2,А (2) := 3,А (3) := 10,В

Подстановка является полностью внутриблочной процедурой выполняется перед устранением излишних команд.

При выполнении операции подстановки для каждого блока создается специальная таблица текущих значений переменных, ко­торым производится присваивание.

Обычно свертка осуществляется только в пределах линейного участка с помощью специальной таблицы Т, вначале пустой. В процессе свертки Т содержит пары (А,К) для всех простых пере­менных А, для которых известно текущее значение К. Кроме того, если программа во внутреннем представлении представлена, нап­ример, в виде триад, то каждая свертываемая триада заменяется

новой триадой (С,К,0), где С(константа) - новый оператор, для

которого не нужно генерировать команды, а К - результирующее

значение свернутой триады.

Алгоритм свертки последовательно просматривает триады ли­нейного участка и для каждой триады делает следующее:

1) Если операнд есть переменная, которая содержится в таблице Т, то операнд заменяется на соответствующее значение К.

2) Если операнд есть ссылка на триаду типа (С,К,0), то операнд заменяется на константу К.

3) Если все операнды являются константами и операция мо­жет быть свернута, то данная триада исполняется и вместо нее подставляется триада (С,К,0), где К - результирующее значение.

4) Если триада является присваиванием А:=В значения пере­менной без индекса А, то:

а) если В - константа, то А со значением В заносится в таблицу Т (старое значение А, если оно было, исключается);

б) если В - не константа, то А со своим значением исклю­чается из Т, если она там была.

4.4. Чистка программы

Данный способ повышает качество программы за счет удале­ния из нее ненужных объектов и конструкций.

Набор преобразований этого типа включает в себя следующие оптимизации:

- удаление идентичных операторов;

- удаление из программы операторов, недостижимых по уп­равлению от начального;

- удаление преобразователей, информационно не влияющих на другие операторы;

- удаление несущественных операторов, т. е. операторов, не влияющих на результат программы;

- удаление бесполезных операторов, т.е. операторов, вы­числяющих так называемые мертвые в этом операторе переменные (переменная жива, или занята в некоторой точке программы, если из этой точки существует путь до какого либо использования этой переменной, не содержащий операторов, задающих ей новое значение; если такого пути не существует, то переменная назы­вается мертвой, или свободной в этой точке);

- удаление процедур, к которым нет обращений;

- удаление неиспользуемых переменных, видов, операций и т. д.

4.4.1. Устранение идентичных операторов

i-тая операция считается лишней, если существует более ранняя идентичная j-тая операция и никакая переменная, от ко­торой зависит эта операция, не изменяется третьей операцией, лежащей между i-той и j-той операциями.

Оператор F считается идентичным и может быть устранен из программы, если существуют другие операторы G1,G2,...Gn, та­кие, что

1) оператор F и все операторы G1, G2, ... Gn выполняют одну и ту же операцию над одними и теми же операндами;

2) не существует пути от присваивания значений операндов оператора F к самому оператору F, который не проходил бы сна-

чала через операторы G.

Например, для линейного участка:

Е:= Е+С*В

А:= Е+С*В

С:= Е+С*В,

представляемого на промежуточном языке в виде триад сле­дующим образом:

(1) * С,В (4) * С,В (7) * С,В

(2) + Е,(1) (5) + Е,(4) (8) + Е,(7)

(3) := (2),Е (6) := (5),А (9) :=(8),С

появление операции С*В во второй и третий раз лишнее, так как ни С, ни В не изменяются после 1-й триады.Однако второе сложение Е с С*В (5-я триада) не является лишним, так как после первого сложения Е с С*В 3-я триада изменяет значение Е. Но третье сложение Е с С*В лишнее и может быть заменено ссыл­кой на 5-ю триаду.

Алгоритм исключения лишних операций просматривает опера­ции в порядке их появления. Если i-я триада лишняя (уже име­ется идентичная j-я триада), то она заменяется триадой (SAME,j,0), где операция SAME ничего не делает и не порождает никаких команд при генерации. Чтобы следить за внутренней за­висимостью переменных и триад, им в соответствие ставятся числа независимости по следующим правилам:

1) Вначале для переменной А число независимости dep(А) равно нулю, так как ее начальное значение не зависит ни от од­ной триады.

2) После обработки i-й триады, в которой переменной А присваивается некоторое значение, dep(А) заменяется на i, так как ее новое значение зависит от i-й триады.

3) При обработке i-й триады ее число независимости dep(i) равно 1+ (максимальное из чисел зависимости ее операндов).

Числа зависимости используются следующим образом:если i-я триада идентична j-й триаде (j<i), то i-я триада считается лишней, если dep(i)=dep(j).

Алгоритм исключения лишних операций для каждой триады де­лает следующее:

1. Если операнд ссылается на триаду вида (SAME,j,0), то он заменяется на (j).

2. Вычисляется dep(i):= число независимости i-й триады, равное 1+(максимум чисел независимости ее операндов).

3. Если существует идентичная j-я триада, причем j<i и dep(i)=dep(j), то i-я триада лишняя и заменяется на (SAME,j,0).

4. Если i-я триада присваивает значение элементу массива В или простой переменной В, то dep(В) получает значение, равное

i.

4.4.2. Замена переменных в операторах условного перехода и устранение неиспользуемых определений

В результате сокращения глубины операции рекурсивная программная переменая (определенная через саму себя), являюща­яся управляющей в операторе условного перехода, может быть за­менена в нем генерируемой переменной t(mt- идентификатором).