Полученное значение вероятности отказа приёма сообщения для передачи по каналу связи при наличии даже небольшого накопителя очереди (m=4) существенно больше, чем было получено выше в первом примере для одноканальной системы связи с интенсивностью l = 0,04 и
t = 14 секунд, не имеющих накопителя для ожидающих передачи сообщений. Там вероятность отказа передачи сообщения была равна 3,63.
Относительная пропускная способность СМО будет равна вероятности приёма очередной заявки в систему:
Среднее число сообщений в накопителе очереди будет равно:
Среднее суммарное число сообщений, находящихся в очереди и передающихся по ветви связи будет равно:
Межузловая ветвь вторичной сети связи имеет n = 4 каналов. Поток сообщений, поступающих для передачи по каналам ветви связи, имеет интенсивность l = 8 сообщений в секунду. Среднее время t = 0,1 передачи одного сообщения равно t/n = 0,025 секунд. В накопители очереди ожидающих передачи сообщений может находиться до m = 4 сообщений. Сообщение прибывшее в момент, когда все m мест в очереди заняты, получает отказ передачи по ветви связи. Найти характеристики СМО:
Ротк – вероятность отказа передачи сообщений;
Q – относительную пропускную способность межузловой ветви;
А – абсолютную пропускную способность межузловой ветви;
Z – среднее число занятых каналов;
Lоч – среднее число сообщений в очереди;
Тож – среднее время ожидания;
Тсист – среднее суммарное время пребывания сообщения в очереди и его передачи по ветви связи.
Решение:
Найдём вначале вероятность нулевого состояния СМО:
Вероятность отказа передачи по ветви связи будет равна:
Относительная пропускная способность:
Абсолютная пропускная способность:
сообщений/с.Среднее число сообщений в накопителе очереди определим по формуле:
сообщ.Среднее время ожидания в очереди:
с.Среднее суммарное время пребывания сообщения в очереди и его передачи по ветви связи:
с.Задача № 6.
Межузловая ветвь вторичной сети связи имеет n = 4 каналов. Поток сообщений, поступающих для передачи по каналам ветви связи, имеет интенсивность l = 8 сообщений в секунду. Среднее время t = 0,1 передачи одного сообщения каждым каналом связи равно t/n = 0,025 секунд. Время ожидания сообщений в очереди неограниченно. Найти характеристики СМО:
Ротк – вероятность отказа передачи сообщений;
Q – относительную пропускную способность ветви связи;
А – абсолютную пропускную способность ветви связи;
Z – среднее число занятых каналов;
Lоч – среднее число сообщений в очереди;
Тож – среднее время ожидания;
Тсист – среднее суммарное время пребывания сообщений в очереди и передачи по ветви связи.
Решение:
Найдём среднюю относительную нагрузку на один канал:
Найдём вероятности состояния СМО:
Вероятность свободного состояния четырёх каналов:
Вероятность занятости одного канала:
; ;Вероятность занятости двух каналов:
; ;Вероятность занятости трёх каналов:
; ;Вероятность занятости четырёх каналов:
; .Абсолютная пропускная способность А = l = 8 сообщений в секунду, то есть она будет равна интенсивности поступления сообщений в следствии того, что очередь может быть бесконечной, а интенсивность поступления заявок меньше интенсивности их передачи по четырёхканальной ветви связи.
Относительная пропускная способность Q будет равна единице.
Среднее число занятых каналов связи:
Вероятность отказа приёма сообщения для передачи по ветви связи в следствии того, что r/n < 1 будет равна нулю.
Среднее число сообщений определим по формуле:
,Среднее время ожидания в очереди:
с.Среднее суммарное время пребывания сообщения в очереди на передаче по ветви связи:
сСписок литературы
Теория сетей связи: Учебник для вузов связи./ Рогинский В. Н., Харкевич А. Д., Шнепс М. А. и др.; Под ред. В. Н. Рогинского. – М. Радио и связь, 1981. –192с.
Вентцель Е. С. Исследование операций. – М.: Советское радио, 1972. –552с.
Вентцель Е. С. Теория вероятностей. –М.: Наука, 1969. –576с.
Клейнрок Л. Вычислительные системы с очередями. –М.: Мир,1976. –600с.
Методическое пособие и задание на контрольную работу по дисциплине «Теория телетрафика»; Михеенко. В. С. – 1998.