Обычно номиналы резисторов R1, R3 и R4 выбираются одинаковыми, при этом каждый из них должен превышать сопротивление R5 не менее чем в 20 раз.
Примем в соответствии с этим условием следующие значения сопротивлений:
Сопротивление R2 задаёт коэффициент усиления схемы и определяется следующим образом:
В настоящее время создан ряд быстродействующих операционных усилителей (ОУ). Наилучшими качествами с точки зрения автора обладает операционный усилитель КР140УД11. Данный прибор выполнен по планарно-эпитаксиальной технологии с изолированным p-n переходом, имеет скорость нарастания выходного напряжения 50 В/мкс и частоту единичного усиления 15 МГц. Кроме того, за счёт оригинальной схемы ОУ отличается высокой стабильностью параметров во всём диапазоне питающих напряжений от ±5 до ±16 В.
Быстродействующие усилители менее устойчивы по сравнению с универсальными ОУ, поэтому для предотвращения генерации с схеме необходимо уменьшить паразитную ёмкость между выходом ОУ и его инвертирующим входом. Для уменьшения указанной ёмкости применяют внешние цепи коррекции, состав которых зависит от задачи, которую решает операционный усилитель. В нашем случае будем использовать стандартную схему частотной коррекции, предназначенную для увеличения скорости нарастания выходного напряжения.
Устройство автоматической регулировки уровня оптического сигнала на выходе передающего устройства должно обеспечивать стабилизацию средней мощности лазерного излучения. Устройство АРУ включает в себя следующие основные элементы (функциональная группа АРУ на рис.4.1):
фотодатчик, детектор автоматической регулировки уровня и усилитель постоянного тока.
Следует обратить внимание на то, что чувствительность фотодиода в данном случае роли не играет, по этому при выборе типа фотодиода будем руководствоваться такими параметрами как надёжность и низкая стоимость.
В нашем случае, при использовании полупроводникового лазера ИЛПН-203, производитель этого лазера предусмотрел, что при применении полупроводниковых лазеров в различных устройствах, разработчики будут использовать метод стабилизации излучения основанный на обратной связи. И по этому конструкция полупроводникового лазера ИЛПН-203 уже содержит фотодатчик с оптическим ответвителем.
Т.е. схема полупроводникового лазера ИЛПН-203 имеет следующий вид:Рассчитаем среднее значение напряжения, поступающего на вход детектора АРУ. Для этого определим среднюю оптическую мощность, попадающую на фотодиод VD1.2:
,где Рпер = 2,43 Дб – средняя мощность оптического сигнала на выходе излучателя;
aуорс = 2 Дб – затухание оптического разветвителя.
Тогда фототок, протекающий в цепи VD1.2 под действием Рфд:
,где S = 0.3 А/Вт – монохроматическая токовая чувствительность используемого фотодиода.
Среднее значение напряжения на входе микросхемы равно среднему значению падения напряжения на сопротивлении Rфд в цепи фотодиода:
,где Rару = 200 Ом.
В качестве детектора АРУ и усилителя постоянного тока предполагается использование интегральной схемы К175ДА1. Её основные характеристики:
-напряжение питания: Uп = 6 В;
-коэффициент передачи АРУ: Кару = 20
-верхняя граничная частота: Fв = 65 МГц.
Значение напряжения на выходе микросхемы:
Далее рассчитаем сопротивление в цепи эмиттера Rэ’’, служащее для введения напряжения обратной связи, поступающего с устройства АРУ. Для этого зададимся глубиной обратной связи 10 Дб (Fос = 3), и определим сквозную крутизну эмиттерного тока Sэ:
,где
- среднее значение статического коэффициента передачи транзистора.Тогда сопротивление в цепи эмиттера:
Следовательно:
Пусть падение напряжения на сопротивлении фильтра URф1 = 1.2 В, тогда значение напряжения АРУ Uару на сопротивлении Rэ’’:
Для сохранения ранее рассчитанного режима работы транзистора при введении АРУ необходимо уменьшить величину сопротивления Rэ’’:
Тогда:
Сопротивление фильтра Rф1 равно:
4.6 Расчёт схемы термостабилизации
При повышении температуры энергетическая характеристика лазерного диода смещается. Для обеспечения стабильности работы излучателя, в схему лазерного излучателя необходимо ввести систему термостабилизации, цель которой, обеспечивать стабилизацию рабочей точки излучателя при отклонениях температуры.
На рис. 4.5 представлена принципиальная схема термостабилизации одноволоконного оптического передатчика. Эта схема построена из следующих составных частей:
-генератор стабильного тока(ГСТ);
-температурный датчик(диод);
-усилитель;
В генераторе стабильного тока ток через транзистор VT2, при равенстве сопротивлений R1 и R2, одинаков с током через VT1 и не зависит от сопротивления нагрузки коллекторной цепи VT2.
В правую ветвь включен диод VD у которого ВАХ при различных показаниях температуры имеет следующий вид (рис.4.6):
Так как ток проходящий через VD имеет постоянное значение и не зависит от температуры то при изменении температуры VD с t1 до t2 - изменяется напряжение на нём. Это обстоятельство и даёт нам возможность управлять выходным напряжением усилителя.
Рассчитаем основные элементы схемы:
Пусть ток ІR1=1мА и сопротивления R1 и R2 равны по 1кОм.
Тогда
Падение напряжения Uбэ составит 0.6В.
Найдём значение сопротивления R3:
VT1 и VT2 выберем из справочника КТ337А. VD выбираем КД102A.
В качестве усилителя возьмём операционный усилитель К544УД1 включенный по классической схеме. Питание ОУ двух полярное ±15В.
Диаппазон изменения Uвыхоудолжен составлять не менее 0,15 В при изменении температуры от 10°С до 40°С. При этом изменение UVD составляет 18мВ (0,6мВ/К по справочным характеристикам). Тогда коэффициент усиления по напряжению должен составлять:
Принимаем значение R6=10кОм, тогда:
Таким образом напряжение на выходе ОУ будет прямо пропорционально зависеть от падения напряжения на VD, которое в свою очередь имеет зависимость от температуры термодатчика.
Начального значение
будет регулироваться переменным сопротивлением R5=1,5кОм.4.7 Расчёт источника питания одноволоконной оптической системы передачи
В составленной схеме оптического передатчика имеем следующие номинальные напряжения питания: +6В, +15В, -15В. Необходимо разработать блок питания для одноволоконного оптического передающего устройства и рассчитать основные его элементы.
Найдём токи потребляемые передатчиком для разных номинальных напряжений.
Для Uн= +6В:
В цепи АРУ микросхема К175ДА1 потребляет 3мА.
Возьмём ток нагрузки на выходе БП равным 20мА, т.е. с небольшим запасом. ІН(+6)=20мА
Для Uн= -15В:
В цепи входного усилителя микросхема К140УД11 потребляет 5мА
В цепи температурного стабилизатора К544УД1 потребляет 7мА.
Примем ток нагрузки ІН(-15)=20мА
Для Uн= +15В:
В цепи входного усилителя микросхема К140УД11 потребляет 10мА
В цепи температурного стабилизатора К544УД1 потребляет 7мА и на транзисторах VT2 и VT3 – 2мА.
Оптический модулятор потребляет 200мА.
Примем ток нагрузки ІН(+15)=250мА
Исходные даннные:
На выходе БП должно быть +6В, +15В, -15В при токах нагрузки соответсвенно 20мА, 250мА и 20мА.
На рис.4.8 представлена электрическая схема предполагаемого блока питания.
Для получения стабильного постоянного напряжения на нагрузке при изменении потребляемого тока к выходу выпрямителя подключают стабилизатор. Расчет позволит выбрать все элементы стабилизатора, исходя из заданного выходного напряжения Uн и максимального тока нагрузки Iн. Однако оба эти параметра не должны превышать параметры уже рассчитанного выпрямителя. А если это условие нарушается, тогда сначала рассчитывают стабилизатор, а затем - выпрямитель и трансформатор питания.